Product Description
Small Surgical ICU Medical Hospital Piston Oil Less Free Oilless Oxygen Air Compressor
Advantages:
Oil-less Vacuum Pumps / Air Compressors
PRANSCH oil-less rocking piston pump and air compressor combines the best characteristics of traditional piston pumps(air compressor) and diaphragm pumps into small units with excellent features.
- Light weight and very portable
- Durable and near ZERO maintenance
- Thermal protection (130 deg C)
- Power cord with plug, 1m length
- Shock mount
- Silencer – muffler
- Stainless steel vacuum and pressure gauge, both with oil damping
- Two stainless steel needle valves each with lock nut.
- All nickel plated fittings
- Power supply 230V, 50/60 Hz
This series is ideal for use in applications where oil-mist is undesirable. For examples, pressure/vacuum filtration, air sampling, water aeration, flame photometer, etc.
Specification:
| Model | Frequency | Flow | Pressure | Power | Speed | Current | Voltage | Heat | Sound | Weight | Hole | Installation Dimensions |
| Hz | L/min | Kpa | Kw | Min-1 | A | V | 0 C | dB(A) | Kg | mm | mm | |
| PM200C | 50 | 50 | 200 | 0.12 | 1380 | 0.45 | 210/235 | 5-40 | 48 | 1.8 | M5 | L100xW74 |
| 60 | 58 | 200 | 0.13 | 1450 | 0.90 | 110/125 | 5-40 | 48 | 1.8 | M5 | ||
| PM300C | 50 | 75 | 300 | 0.15 | 1380 | 0.76 | 210/235 | 5-40 | 45 | 3.2 | M6 | L118xW70 |
| 60 | 90 | 300 | 0.16 | 1450 | 1.52 | 110/125 | 5-40 | 45 | 3.2 | M6 | ||
| PM550C | 50 | 105 | 600 | 0.32 | 1380 | 1.50 | 210/235 | 5-40 | 56 | 6.0 | M6 | L148xW83 |
| 60 | 115 | 600 | 0.35 | 1450 | 3.00 | 110/125 | 5-40 | 56 | 6.0 | M6 | ||
| PM1200C | 50 | 120 | 300 | 0.45 | 1380 | 1.70 | 210/235 | 5-40 | 58 | 7.6 | M6 | L203xW86 |
| 60 | 145 | 300 | 0.49 | 1450 | 3.50 | 110/125 | 5-40 | 58 | 7.6 | M6 | ||
| PM1400C | 50 | 160 | 700 | 0.45 | 1380 | 1.70 | 210/235 | 5-40 | 58 | 8.5 | M6 | L203xW86 |
| 60 | 180 | 700 | 0.49 | 1450 | 3.50 | 110/125 | 5-40 | 58 | 8.5 | M6 | ||
| PM2000C | 50 | 230 | 800 | 0.55 | 1380 | 2.50 | 210/235 | 5-40 | 60 | 10.0 | M6 | L203xW86 |
| 60 | 250 | 800 | 0.60 | 1450 | 5.20 | 110/125 | 5-40 | 60 | 10.0 | M6 | ||
| HP2400C | 50 | 240 | 900 | 0.90 | 1380 | 3.30 | 210/235 | 5-40 | 75 | 17.0 | M7 | L246xW127 |
| 60 | 258 | 900 | 1.00 | 1450 | 6.80 | 110/125 | 5-40 | 75 | 17.0 | M7 | ||
| PM3000C | 50 | 250 | 1000 | 1.50 | 1380 | 4.20 | 210/235 | 5-40 | 76 | 17.5 | M7 | L246xW127 |
| 60 | 270 | 1000 | 1.70 | 1450 | 9.00 | 110/125 | 5-40 | 76 | 17.5 | M7 |
Why use a Rocking Piston Product?
Variety
Pransch oilless Rocking Piston air compressors and vacuum pumps, available in single, twin, miniature, and tankmounted
Styles, are the perfect choice for hundreds of applications. Choose from dual frequency, shaded pole,
And permanent split capacitor (psc) electric motors with AC multi-voltage motors to match North American,
European, and CHINAMFG power supplies. A complete line of recommended accessories as well as 6, 12, and
24 volt DC models in brush and brushless types are also available.
Performance
The rocking piston combines the best characteristics of piston and diaphragm air compressors into a small unit
With exceptional performance. Air flow capabilities from 3.4 LPM to 5.5 CFM (9.35 m3/h), pressure to 175 psi
(12.0 bar) and vacuum capabilities up to 29 inHg (31 mbar). Horsepowers range from 1/20 to 1/2 HP
(0.04 to 0.37 kW).
Reliable
These pumps are made to stand up through years of use. The piston rod and bearing assembly are bonded
Together, not clamped; They will not slip, loosen, or misalign to cause trouble.
Clean Air
Because CHINAMFG pumps are oil-free, they are ideal for use in applications in laboratories, hospitals, and the
Food industry where oil mist contamination is undesirable.
Application:
- Transportation application include: Auto detailing Equipment, Braking Systems, Suspension Systems, Tire Inflators
- Food and Beverage application include: Beverage dispensing, coffee and Espresso equipment, Food processing and packaging, Nitrogen Generation
- Medical and laboratory application include: Body fluid Analysis equipment, Dental compressors and hand tools, dental vacuum ovens, Dermatology equipment, eye surgery equipment, lab automation, Liposuction equipment, Medical aspiration, Nitrogen Generation, Oxygen concentrators, Vacuum Centrifuge, vacuum filtering, ventilators
- General industrial application include: Cable pressurization, core drilling
- Environmental application include: Dry sprinkler systems, Pond Aeration, Refrigerant Reclamation, Water Purification Systems
- Printing and packaging application include: Vacuum frames
- Material Handling application include: Vacuum mixing
/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
| Lubrication Style: | Oil-free |
|---|---|
| Cooling System: | Air Cooling |
| Structure Type: | Closed Type |
| Compress Level: | Single-Stage |
| Refrigerant Type: | Air |
| Material: | Steel |
| Customization: |
Available
|
|
|---|
.webp)
Can air compressors be used for shipbuilding and maritime applications?
Air compressors are widely used in shipbuilding and maritime applications for a variety of tasks and operations. The maritime industry relies on compressed air for numerous essential functions. Here’s an overview of how air compressors are employed in shipbuilding and maritime applications:
1. Pneumatic Tools and Equipment:
Air compressors are extensively used to power pneumatic tools and equipment in shipbuilding and maritime operations. Pneumatic tools such as impact wrenches, drills, grinders, sanders, and chipping hammers require compressed air to function. The versatility and power provided by compressed air make it an ideal energy source for heavy-duty tasks, maintenance, and construction activities in shipyards and onboard vessels.
2. Painting and Surface Preparation:
Air compressors play a crucial role in painting and surface preparation during shipbuilding and maintenance. Compressed air is used to power air spray guns, sandblasting equipment, and other surface preparation tools. Compressed air provides the force necessary for efficient and uniform application of paints, coatings, and protective finishes, ensuring the durability and aesthetics of ship surfaces.
3. Pneumatic Actuation and Controls:
Air compressors are employed in pneumatic actuation and control systems onboard ships. Compressed air is used to operate pneumatic valves, actuators, and control devices that regulate the flow of fluids, control propulsion systems, and manage various shipboard processes. Pneumatic control systems offer reliability and safety advantages in maritime applications.
4. Air Start Systems:
In large marine engines, air compressors are used in air start systems. Compressed air is utilized to initiate the combustion process in the engine cylinders. The compressed air is injected into the cylinders to turn the engine’s crankshaft, enabling the ignition of fuel and starting the engine. Air start systems are commonly found in ship propulsion systems and power generation plants onboard vessels.
5. Pneumatic Conveying and Material Handling:
In shipbuilding and maritime operations, compressed air is used for pneumatic conveying and material handling. Compressed air is utilized to transport bulk materials, such as cement, sand, and grain, through pipelines or hoses. Pneumatic conveying systems enable efficient and controlled transfer of materials, facilitating construction, cargo loading, and unloading processes.
6. Air Conditioning and Ventilation:
Air compressors are involved in air conditioning and ventilation systems onboard ships. Compressed air powers air conditioning units, ventilation fans, and blowers, ensuring proper air circulation, cooling, and temperature control in various ship compartments, cabins, and machinery spaces. Compressed air-driven systems contribute to the comfort, safety, and operational efficiency of maritime environments.
These are just a few examples of how air compressors are utilized in shipbuilding and maritime applications. Compressed air’s versatility, reliability, and convenience make it an indispensable energy source for various tasks and systems in the maritime industry.
.webp)
How does the horsepower of an air compressor affect its capabilities?
The horsepower of an air compressor is a crucial factor that directly impacts its capabilities and performance. Here’s a closer look at how the horsepower rating affects an air compressor:
Power Output:
The horsepower rating of an air compressor indicates its power output or the rate at which it can perform work. Generally, a higher horsepower rating translates to a greater power output, allowing the air compressor to deliver more compressed air per unit of time. This increased power output enables the compressor to operate pneumatic tools and equipment that require higher air pressure or greater airflow.
Air Pressure:
The horsepower of an air compressor is directly related to the air pressure it can generate. Air compressors with higher horsepower ratings have the capacity to produce higher air pressures. This is particularly important when operating tools or machinery that require specific air pressure levels to function optimally. For example, heavy-duty pneumatic tools like jackhammers or impact wrenches may require higher air pressure to deliver the necessary force.
Air Volume:
In addition to air pressure, the horsepower of an air compressor also affects the air volume or airflow it can provide. Higher horsepower compressors can deliver greater volumes of compressed air, measured in cubic feet per minute (CFM). This increased airflow is beneficial when using pneumatic tools that require a continuous supply of compressed air, such as paint sprayers or sandblasters.
Duty Cycle:
The horsepower rating of an air compressor can also influence its duty cycle. The duty cycle refers to the amount of time an air compressor can operate continuously before it needs to rest and cool down. Higher horsepower compressors often have larger and more robust components, allowing them to handle heavier workloads and operate for longer periods without overheating. This is particularly important in demanding applications where continuous and uninterrupted operation is required.
Size and Portability:
It’s worth noting that the horsepower rating can also affect the physical size and portability of an air compressor. Higher horsepower compressors tend to be larger and heavier due to the need for more substantial motors and components to generate the increased power output. This can impact the ease of transportation and maneuverability, especially in portable or mobile applications.
When selecting an air compressor, it is essential to consider the specific requirements of your intended applications. Factors such as desired air pressure, airflow, duty cycle, and portability should be taken into account. It’s important to choose an air compressor with a horsepower rating that aligns with the demands of the tools and equipment you plan to operate, ensuring optimal performance and efficiency.
Consulting the manufacturer’s specifications and guidelines can provide valuable information on how the horsepower rating of an air compressor corresponds to its capabilities and suitability for different tasks.
.webp)
What is the impact of tank size on air compressor performance?
The tank size of an air compressor plays a significant role in its performance and functionality. Here are the key impacts of tank size:
1. Air Storage Capacity: The primary function of the air compressor tank is to store compressed air. A larger tank size allows for greater air storage capacity. This means the compressor can build up a reserve of compressed air, which can be useful for applications that require intermittent or fluctuating air demand. Having a larger tank ensures a steady supply of compressed air during peak usage periods.
2. Run Time: The tank size affects the run time of the air compressor. A larger tank can provide longer continuous operation before the compressor motor needs to restart. This is because the compressed air in the tank can be used to meet the demand without the need for the compressor to run continuously. It reduces the frequency of motor cycling, which can improve energy efficiency and prolong the motor’s lifespan.
3. Pressure Stability: A larger tank helps maintain stable pressure during usage. When the compressor is running, it fills the tank until it reaches a specified pressure level, known as the cut-out pressure. As the air is consumed from the tank, the pressure drops to a certain level, known as the cut-in pressure, at which point the compressor restarts to refill the tank. A larger tank size results in a slower pressure drop during usage, ensuring more consistent and stable pressure for the connected tools or equipment.
4. Duty Cycle: The duty cycle refers to the amount of time an air compressor can operate within a given time period. A larger tank size can increase the duty cycle of the compressor. The compressor can run for longer periods before reaching its duty cycle limit, reducing the risk of overheating and improving overall performance.
5. Tool Compatibility: The tank size can also impact the compatibility with certain tools or equipment. Some tools, such as high-demand pneumatic tools or spray guns, require a continuous and adequate supply of compressed air. A larger tank size ensures that the compressor can meet the air demands of such tools without causing pressure drops or affecting performance.
It is important to note that while a larger tank size offers advantages in terms of air storage and performance, it also results in a larger and heavier compressor unit. Consider the intended application, available space, and portability requirements when selecting an air compressor with the appropriate tank size.
Ultimately, the optimal tank size for an air compressor depends on the specific needs of the user and the intended application. Assess the air requirements, duty cycle, and desired performance to determine the most suitable tank size for your air compressor.


editor by CX 2024-02-13
China Standard 180L/Min Piston Oil Less Free Oilless 8L Oxygen Concentrators Medical Air Compressor supplier
Product Description
Piston Oil Less Free Oilless 8L Oxygen concentrators Medical Air Compressor
Advantages:
Oil-less Vacuum Pumps / Air Compressors
PRANSCH oil-less rocking piston pump and air compressor combines the best characteristics of traditional piston pumps(air compressor) and diaphragm pumps into small units with excellent features.
- Light weight and very portable
- Durable and near ZERO maintenance
- Thermal protection (130 deg C)
- Power cord with plug, 1m length
- Shock mount
- Silencer – muffler
- Stainless steel vacuum and pressure gauge, both with oil damping
- Two stainless steel needle valves each with lock nut.
- All nickel plated fittings
- Power supply 230V, 50/60 Hz
This series is ideal for use in applications where oil-mist is undesirable. For examples, pressure/vacuum filtration, air sampling, water aeration, flame photometer, etc.
Specification:
| Model | Frequency | Flow | Pressure | Power | Speed | Current | Voltage | Heat | Sound | Weight | Hole | Installation Dimensions |
| Hz | L/min | Kpa | Kw | Min-1 | A | V | 0 C | dB(A) | Kg | mm | mm | |
| PM200C | 50 | 50 | 200 | 0.12 | 1380 | 0.45 | 210/235 | 5-40 | 48 | 1.8 | M5 | L100xW74 |
| 60 | 58 | 200 | 0.13 | 1450 | 0.90 | 110/125 | 5-40 | 48 | 1.8 | M5 | ||
| PM300C | 50 | 75 | 300 | 0.15 | 1380 | 0.76 | 210/235 | 5-40 | 45 | 3.2 | M6 | L118xW70 |
| 60 | 90 | 300 | 0.16 | 1450 | 1.52 | 110/125 | 5-40 | 45 | 3.2 | M6 | ||
| PM550C | 50 | 105 | 600 | 0.32 | 1380 | 1.50 | 210/235 | 5-40 | 56 | 6.0 | M6 | L148xW83 |
| 60 | 115 | 600 | 0.35 | 1450 | 3.00 | 110/125 | 5-40 | 56 | 6.0 | M6 | ||
| PM1200C | 50 | 120 | 300 | 0.45 | 1380 | 1.70 | 210/235 | 5-40 | 58 | 7.6 | M6 | L203xW86 |
| 60 | 145 | 300 | 0.49 | 1450 | 3.50 | 110/125 | 5-40 | 58 | 7.6 | M6 | ||
| PM1400C | 50 | 160 | 700 | 0.45 | 1380 | 1.70 | 210/235 | 5-40 | 58 | 8.5 | M6 | L203xW86 |
| 60 | 180 | 700 | 0.49 | 1450 | 3.50 | 110/125 | 5-40 | 58 | 8.5 | M6 | ||
| PM2000C | 50 | 230 | 800 | 0.55 | 1380 | 2.50 | 210/235 | 5-40 | 60 | 10.0 | M6 | L203xW86 |
| 60 | 250 | 800 | 0.60 | 1450 | 5.20 | 110/125 | 5-40 | 60 | 10.0 | M6 | ||
| HP2400C | 50 | 240 | 900 | 0.90 | 1380 | 3.30 | 210/235 | 5-40 | 75 | 17.0 | M7 | L246xW127 |
| 60 | 258 | 900 | 1.00 | 1450 | 6.80 | 110/125 | 5-40 | 75 | 17.0 | M7 | ||
| PM3000C | 50 | 250 | 1000 | 1.50 | 1380 | 4.20 | 210/235 | 5-40 | 76 | 17.5 | M7 | L246xW127 |
| 60 | 270 | 1000 | 1.70 | 1450 | 9.00 | 110/125 | 5-40 | 76 | 17.5 | M7 |
Why use a Rocking Piston Product?
Variety
Pransch oilless Rocking Piston air compressors and vacuum pumps, available in single, twin, miniature, and tankmounted
Styles, are the perfect choice for hundreds of applications. Choose from dual frequency, shaded pole,
And permanent split capacitor (psc) electric motors with AC multi-voltage motors to match North American,
European, and CHINAMFG power supplies. A complete line of recommended accessories as well as 6, 12, and
24 volt DC models in brush and brushless types are also available.
Performance
The rocking piston combines the best characteristics of piston and diaphragm air compressors into a small unit
With exceptional performance. Air flow capabilities from 3.4 LPM to 5.5 CFM (9.35 m3/h), pressure to 175 psi
(12.0 bar) and vacuum capabilities up to 29 inHg (31 mbar). Horsepowers range from 1/20 to 1/2 HP
(0.04 to 0.37 kW).
Reliable
These pumps are made to stand up through years of use. The piston rod and bearing assembly are bonded
Together, not clamped; They will not slip, loosen, or misalign to cause trouble.
Clean Air
Because CHINAMFG pumps are oil-free, they are ideal for use in applications in laboratories, hospitals, and the
Food industry where oil mist contamination is undesirable.
Application:
- Transportation application include: Auto detailing Equipment, Braking Systems, Suspension Systems, Tire Inflators
- Food and Beverage application include: Beverage dispensing, coffee and Espresso equipment, Food processing and packaging, Nitrogen Generation
- Medical and laboratory application include: Body fluid Analysis equipment, Dental compressors and hand tools, dental vacuum ovens, Dermatology equipment, eye surgery equipment, lab automation, Liposuction equipment, Medical aspiration, Nitrogen Generation, Oxygen concentrators, Vacuum Centrifuge, vacuum filtering, ventilators
- General industrial application include: Cable pressurization, core drilling
- Environmental application include: Dry sprinkler systems, Pond Aeration, Refrigerant Reclamation, Water Purification Systems
- Printing and packaging application include: Vacuum frames
- Material Handling application include: Vacuum mixing
/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
| Lubrication Style: | Oil-free |
|---|---|
| Cooling System: | Air Cooling |
| Structure Type: | Closed Type |
| Compress Level: | Single-Stage |
| Refrigerant Type: | Air |
| Material: | Steel |
| Customization: |
Available
|
|
|---|
.webp)
What Are the Key Components of a Water-Lubrication System in Compressors?
A water-lubrication system in compressors typically consists of several key components that work together to provide lubrication and cooling to the compressor. Here’s a detailed explanation of the key components of a water-lubrication system in compressors:
Water Supply:
- Water Source: The water-lubrication system requires a water source that provides clean and suitable water for lubrication. The water can be sourced from various places such as municipal water supply, well water, or treated water from a dedicated water treatment system.
- Water Inlet: The water inlet is the entry point where water enters the compressor’s lubrication system. It may include valves, filters, or other components to regulate and control the water flow.
Lubrication System:
- Water Jackets: Water jackets are channels or passages built into the compressor’s housing or cylinder walls. These jackets allow water to circulate and come into direct contact with the compressor’s moving parts, providing lubrication and cooling. The water jackets help dissipate heat generated during compression and prevent excessive temperatures that could damage the compressor.
- Water Pump: The water pump is responsible for circulating water through the water jackets and the entire lubrication system. It provides the necessary pressure to ensure adequate water flow and distribution to the compressor’s components.
- Flow Control Devices: Flow control devices, such as valves or flow restrictors, are often included in the water-lubrication system to regulate and control the water flow rate. These devices help maintain optimal water pressure and flow throughout the system, ensuring effective lubrication and cooling.
- Water Filters: Water filters are used to remove impurities, sediment, or debris from the water before it enters the lubrication system. They help prevent blockages, protect the compressor’s components from damage, and maintain the quality of the water used for lubrication.
- Water Separator: A water separator is a component that removes excess water, moisture, or condensate from the compressed air. It ensures that the compressed air leaving the compressor is dry and free from excess water content, preventing potential issues such as corrosion or contamination downstream.
Control and Monitoring:
- Temperature Sensors: Temperature sensors are used to monitor the temperature of the water and the compressor components. They provide feedback to the control system, allowing for adjustments in water flow or cooling measures if required to maintain optimal operating conditions.
- Pressure Sensors: Pressure sensors are employed to monitor the water pressure within the lubrication system. They help ensure that the water flow and pressure are within the desired range, allowing for proper lubrication and cooling of the compressor.
- Control System: A control system, which may include a combination of sensors, valves, and controllers, is responsible for regulating and maintaining the operation of the water-lubrication system. It can monitor various parameters, such as temperature, pressure, and flow, and make adjustments as needed to ensure efficient and safe operation.
Regular maintenance, inspection, and monitoring of the key components of the water-lubrication system are essential to ensure its proper functioning and to prevent any issues that could affect the performance and longevity of the compressor.
.webp)
Are There Any Potential Water-Related Issues with These Compressors?
Yes, there are potential water-related issues that can arise with water-lubricated compressors. Here’s a detailed explanation of some of the common water-related issues associated with these compressors:
Corrosion:
- Internal Corrosion: Water-lubricated compressors are susceptible to internal corrosion due to the presence of water within the system. If the water used is not properly treated or if corrosion prevention measures are insufficient, the internal components of the compressor can corrode over time. Corrosion can lead to reduced performance, component damage, and the potential for leaks or system failures.
- External Corrosion: External components such as piping, valves, and fittings can also be affected by corrosion if exposed to water and moisture. Corrosion on these external surfaces can lead to compromised integrity, leaks, and reduced system efficiency.
Water Quality:
- Water Contaminants: The quality of the water used in water-lubricated compressors is crucial. If the water contains contaminants such as sediment, debris, oil, or chemicals, it can negatively impact the performance and reliability of the compressor. Contaminants can cause blockages, clogging, increased wear on components, reduced lubrication effectiveness, and potential damage to the compressor.
- Water Hardness: Water hardness, characterized by high mineral content, can lead to scaling and deposits within the compressor and associated components. Scaling can restrict flow, impede heat transfer, and reduce the efficiency of the compressor. It can also contribute to fouling and corrosion issues.
Water Treatment and Filtration:
- Inadequate Water Treatment: Insufficient or improper water treatment can lead to various issues. If the water is not adequately treated for contaminants, hardness, or pH levels, it can result in accelerated corrosion, scaling, fouling, and reduced lubrication effectiveness. Inadequate water treatment can also contribute to increased maintenance requirements and decreased overall compressor performance.
- Filtration System Issues: Filtration systems play a crucial role in removing contaminants from the water. However, if the filtration system is not properly maintained, filters become clogged or damaged, or if there are design or installation issues, it can lead to inadequate filtration and compromised water quality. This can result in the accumulation of contaminants, reduced lubrication performance, and potential damage to the compressor.
Water Supply and Availability:
- Insufficient Water Supply: Water-lubricated compressors rely on a consistent and reliable water supply. If the water supply is insufficient in terms of flow rate, pressure, or quality, it can impact the compressor’s operation and performance. Inadequate water supply can lead to inadequate lubrication, reduced cooling capacity, and increased wear on components.
- Water Source Availability: The availability of a suitable water source is essential for water-lubricated compressors. In certain locations or applications, accessing clean water or meeting specific water quality requirements may pose challenges. Lack of a suitable water source can limit the feasibility or effectiveness of using water-lubricated compressors.
It is important to address these potential water-related issues by implementing proper water treatment, corrosion prevention measures, regular maintenance of filtration systems, and monitoring of water quality. Adhering to manufacturer guidelines, performing regular inspections, and taking proactive measures can help mitigate these issues and ensure the reliable and efficient operation of water-lubricated compressors.
.webp)
Are Water-Lubricated Air Compressors Suitable for Food and Beverage Industries?
Water-lubricated air compressors can be highly suitable for the food and beverage industries due to several reasons:
- Food-grade lubrication: Water is a natural and food-grade lubricant. It does not introduce harmful contaminants or chemicals into the production process, ensuring the safety and quality of food and beverage products. Water lubrication eliminates the risk of oil contamination in food products that can occur with oil-lubricated compressors.
- Compliance with hygiene standards: The food and beverage industries have strict hygiene standards and regulations. Water-lubricated air compressors align with these standards as water is a clean and sanitary lubricant. It minimizes the risk of cross-contamination and helps maintain a hygienic production environment.
- Reduced risk of product contamination: Water lubrication eliminates the possibility of oil carryover or oil vapor entering the compressed air system. This reduces the risk of oil contamination in food and beverage products, ensuring their purity and quality.
- Improved product shelf life: Oil-lubricated compressors can release oil aerosols or vapors that may negatively affect the taste, odor, or quality of food and beverage products. Water-lubricated compressors eliminate this concern, contributing to improved product shelf life and maintaining the desired sensory attributes.
- Easy cleanup and maintenance: Water lubrication simplifies cleanup and maintenance procedures in food and beverage production facilities. Water does not leave behind sticky residues or require extensive cleaning processes. It facilitates faster and more efficient cleaning, reducing downtime and improving overall productivity.
- Environmental friendliness: Water is a sustainable and environmentally friendly lubricant choice. It is non-toxic, biodegradable, and does not contribute to air or water pollution. Using water-lubricated air compressors aligns with the sustainability goals of the food and beverage industries.
Considering these factors, water-lubricated air compressors are well-suited for the food and beverage industries, ensuring compliance with hygiene standards, preventing product contamination, and promoting a safe and sustainable production environment.


editor by CX 2024-02-12
China Good quality Two Stages High Pressure Oilless Oil-Free Reciprocating Piston Type Air compressor air compressor portable
Product Description
Industrial Diesel High Pressure Piston Air Compressor Advantages
No vibration after simple installation.
Use vane air cooling technology, larger cooling area, and longer life.
Flywheel’s weight is increased, incredible energy saving.
Designed especially for PET bottle blowing machinery, plastic injection molding machinery and hydropower station, etc.
Technical Parameters Of Industrial Diesel High Pressure Piston Air Compressor
| Title | Model | Air delivery | Max.working pressure |
Motor power | Overall Dimensions (mm) |
Weight (kg) |
||||
| m3/min | cfm | bar | psig | kw | hp | |||||
| High pressure / Booster Series Air compressor |
2 Stage compression |
DG0.8/30 | 0.8 | 28.25 | 30 | 435 | 9 | 12 | 1080*620*800 | 350 |
| DG1.25/30 | 1.25 | 44.14 | 30 | 435 | 15 | 20 | 1800*650*1450 | 550 | ||
| DG1.5/30 | 1.5 | 52.97 | 30 | 435 | 15 | 20 | 1500*850*1050 | 550 | ||
| DG3/17 | 3 | 105.93 | 17 | 247 | 30 | 40 | 1750*1050*1250 | 700 | ||
| DG6/17 | 6 | 211.86 | 17 | 247 | 45 | 60 | 1850*1050*1250 | 750 | ||
| 3 Stage compression |
DG2.2/40 | 2.2 | 77.68 | 40 | 580 | 22 | 29 | 1780*1050*1340 | 800 | |
| DG2.2/30 | 2.2 | 77.68 | 30 | 435 | 22 | 29 | 1780*1050*1340 | 650 | ||
| DG3.3/30 | 3.3 | 116.52 | 30 | 435 | 30 | 40 | 1780*1050*1340 | 900 | ||
| DG3/40 | 3 | 105.93 | 40 | 580 | 30 | 40 | 1650*1250*1250 | 1100 | ||
| DG0.8/100 | 0.8 | 28.25 | 100 | 1450 | 15 | 20 | 1300*850*1350 | 700 | ||
| DG1/70 | 1 | 35.31 | 70 | 1015 | 15 | 20 | 1300*850*1350 | 500 | ||
| DG1/40 | 1 | 35.31 | 40 | 580 | 15 | 20 | 1300*850*1350 | 600 | ||
| 4 Stage compression |
DG1/150 | 1 | 35.31 | 150 | 2175 | 22 | 29 | 1650*1450*1140 | 980 | |
| DG1/200 | 1 | 35.31 | 200 | 2900 | 22 | 29 | 1650*1450*1140 | 980 | ||
| DG1/300 | 1 | 35.31 | 300 | 4350 | 22 | 29 | 1650*1450*1140 | 1050 | ||
| DG1/400 | 1 | 35.31 | 400 | 5800 | 22 | 29 | 1650*1450*1140 | 2700 | ||
| DG2.0/80 | 2 | 70.62 | 80 | 1160 | 30 | 40 | 1780*1450*1140 | 2500 | ||
| DG2.2/150 | 2.2 | 77.68 | 150 | 2175 | 30 | 40 | 1780*1450*1340 | 980 | ||
| DG2/300 | 2 | 70.62 | 300 | 4350 | 37 | 50 | 1780*1450*1340 | 1500 | ||
| DG3/80 | 3 | 105.93 | 80 | 1160 | 30 | 40 | 1780*1450*1140 | 2600 | ||
| DG3/200 | 3 | 105.93 | 200 | 2900 | 45 | 60 | 1780*1450*1340 | 2600 | ||
| 5 Stage compression |
DG2/450 | 2 | 70.62 | 450 | 6525 | 37 | 50 | 1780*1450*1340 | 2600 | |
| DG3/300 | 3 | 105.93 | 300 | 4350 | 45 | 60 | 1780*1450*1340 | 2600 | ||
| DG3/450 | 3 | 105.93 | 450 | 6525 | 55 | 74 | 1780*1450*1340 | 2800 | ||
*) Specifications are subject to change without prior notice
DENAIR Certifications
DENAIR Factory
DENAIR International Trading Team
Why Choose DENAIR ?
We carefully selected for you the classic case
DENAIR High Pressure Air Compressor in Myanmar
Project Name: Plastic industry PET bottles blowing machine in Yangon, Myanmar
Product Name: 1.6m3/min 350bar diesel driven piston air compressor
Model No. & Qty: DG-1.6/350 x 1
Working Time: From May, 2016 till now
FAQ
Q1: Are you factory or trade company?
A1: We are factory.
Q2: What the exactly address of your factory?
A2: Our company is located in No. 6767, Tingfeng Rd. Xihu (West Lake) Dis.n District, ZheJiang 201502, China
And our factory is located in No. 366, YangzhuangBang Street, Pingxing Rd., Xindai Town,HangZhou, ZHangZhoug Province, China
Q3: Warranty terms of your machine?
A3: Two years warranty for the machine and technical support according to your needs.
Q4: Will you provide some spare parts of the machines?
A4: Yes, of course.
Q5: How long will you take to arrange production?
A5: 380V 50HZ we can delivery the goods within 10 days. Other electricity or other color we will delivery within 22 days
Q6: Can you accept OEM orders?
A6: Yes, with professional design team, OEM orders are highly welcome.
.webp)
What Are the Key Components of a Water-Lubrication System in Compressors?
A water-lubrication system in compressors typically consists of several key components that work together to provide lubrication and cooling to the compressor. Here’s a detailed explanation of the key components of a water-lubrication system in compressors:
Water Supply:
- Water Source: The water-lubrication system requires a water source that provides clean and suitable water for lubrication. The water can be sourced from various places such as municipal water supply, well water, or treated water from a dedicated water treatment system.
- Water Inlet: The water inlet is the entry point where water enters the compressor’s lubrication system. It may include valves, filters, or other components to regulate and control the water flow.
Lubrication System:
- Water Jackets: Water jackets are channels or passages built into the compressor’s housing or cylinder walls. These jackets allow water to circulate and come into direct contact with the compressor’s moving parts, providing lubrication and cooling. The water jackets help dissipate heat generated during compression and prevent excessive temperatures that could damage the compressor.
- Water Pump: The water pump is responsible for circulating water through the water jackets and the entire lubrication system. It provides the necessary pressure to ensure adequate water flow and distribution to the compressor’s components.
- Flow Control Devices: Flow control devices, such as valves or flow restrictors, are often included in the water-lubrication system to regulate and control the water flow rate. These devices help maintain optimal water pressure and flow throughout the system, ensuring effective lubrication and cooling.
- Water Filters: Water filters are used to remove impurities, sediment, or debris from the water before it enters the lubrication system. They help prevent blockages, protect the compressor’s components from damage, and maintain the quality of the water used for lubrication.
- Water Separator: A water separator is a component that removes excess water, moisture, or condensate from the compressed air. It ensures that the compressed air leaving the compressor is dry and free from excess water content, preventing potential issues such as corrosion or contamination downstream.
Control and Monitoring:
- Temperature Sensors: Temperature sensors are used to monitor the temperature of the water and the compressor components. They provide feedback to the control system, allowing for adjustments in water flow or cooling measures if required to maintain optimal operating conditions.
- Pressure Sensors: Pressure sensors are employed to monitor the water pressure within the lubrication system. They help ensure that the water flow and pressure are within the desired range, allowing for proper lubrication and cooling of the compressor.
- Control System: A control system, which may include a combination of sensors, valves, and controllers, is responsible for regulating and maintaining the operation of the water-lubrication system. It can monitor various parameters, such as temperature, pressure, and flow, and make adjustments as needed to ensure efficient and safe operation.
Regular maintenance, inspection, and monitoring of the key components of the water-lubrication system are essential to ensure its proper functioning and to prevent any issues that could affect the performance and longevity of the compressor.
.webp)
What Are the Considerations for Choosing Water-Lubricated vs. Oil-Lubricated Compressors?
When selecting between water-lubricated and oil-lubricated compressors, several considerations come into play. Here’s a detailed explanation of the key factors to consider when choosing between these two types:
Operating Environment:
- Water Sensitivity: Water-lubricated compressors are well-suited for environments where water is readily available and can be easily supplied to the compressor system. On the other hand, oil-lubricated compressors are more suitable for applications where water is not readily available or where water contamination could pose a problem.
- Cleanliness Requirements: If the application demands a high level of cleanliness, such as in certain manufacturing processes or cleanroom environments, water-lubricated compressors may be preferred. Water is inherently cleaner than oil and reduces the risk of oil contamination in sensitive operations.
Maintenance and Service:
- Lubricant Replacement: Oil-lubricated compressors require regular oil changes and maintenance to ensure proper lubrication and performance. Water-lubricated compressors, on the other hand, eliminate the need for oil changes and associated maintenance tasks, simplifying the maintenance requirements.
- Oil Contamination: Oil-lubricated compressors carry the risk of oil contamination in the compressed air system. This can be a concern in certain applications where oil contamination can negatively impact product quality or downstream equipment. Water-lubricated compressors reduce the risk of oil contamination, making them advantageous in such applications.
Environmental Impact:
- Oil Disposal: Oil-lubricated compressors generate used oil that requires proper disposal in accordance with environmental regulations. Water-lubricated compressors eliminate the need for oil disposal, contributing to a reduced environmental impact.
- Energy Efficiency: In terms of energy efficiency, water-lubricated compressors tend to have an advantage. Water has a higher specific heat capacity than oil, meaning it can absorb and dissipate heat more effectively. This can result in improved cooling efficiency and potentially lower energy consumption compared to oil-lubricated compressors.
Application-Specific Factors:
- Operating Pressure: Water-lubricated compressors are generally suitable for lower to moderate operating pressures. Oil-lubricated compressors, on the other hand, can handle higher operating pressures, making them more appropriate for applications that require higher pressure levels.
- Temperature Sensitivity: Water-lubricated compressors may have limitations in applications where low temperatures are encountered. Water freezing or becoming slushy can cause operational issues. Oil-lubricated compressors, with appropriate low-temperature oil formulations, can better handle such temperature-sensitive conditions.
Cost Considerations:
- Initial Cost: Water-lubricated compressors generally have a lower initial cost compared to oil-lubricated compressors. This cost advantage can be attractive for applications with budget constraints.
- Maintenance Cost: Over the long term, water-lubricated compressors may have lower maintenance costs due to the elimination of oil changes and associated maintenance tasks. However, it’s important to consider the specific maintenance requirements and costs associated with each type of compressor.
By considering these factors, including the operating environment, maintenance and service requirements, environmental impact, application-specific factors, and cost considerations, one can make an informed decision when choosing between water-lubricated and oil-lubricated compressors.
.webp)
Are Water Lubrication Air Compressors More Environmentally Friendly?
Water lubrication in air compressors offers several environmental benefits compared to traditional lubrication methods. Here are some reasons why water lubrication is considered more environmentally friendly:
- Non-toxic and biodegradable: Water is a natural substance that is non-toxic and biodegradable. It does not contain harmful chemicals or additives that can pollute the air or water systems. When water lubricants are used in air compressors, there is a reduced risk of environmental contamination.
- Reduced air pollution: Traditional lubricants, such as oils or synthetic lubricants, can release volatile organic compounds (VOCs) into the air during operation. VOCs contribute to air pollution and can have detrimental effects on human health and the environment. Water lubrication eliminates the release of VOCs, resulting in improved air quality and reduced air pollution.
- Minimized water pollution: Water lubrication does not introduce additional pollutants into water systems. Unlike oils or synthetic lubricants, water does not leave behind harmful residues or contaminants that can contaminate water sources. This helps to protect aquatic ecosystems and maintain water quality.
- Energy efficiency: Water lubrication can contribute to energy efficiency in air compressors. Water has excellent heat transfer properties, allowing for efficient dissipation of heat generated during compressor operation. By effectively managing heat, water lubrication helps to reduce energy consumption and improve overall compressor efficiency.
- Sustainable resource: Water is a renewable resource that is readily available in nature. Unlike oil or synthetic lubricants, which require extraction and processing, water can be sourced sustainably. This reduces the reliance on finite resources and promotes a more sustainable approach to lubrication in air compressors.
Overall, water lubrication in air compressors is considered more environmentally friendly due to its non-toxic nature, reduced air and water pollution, energy efficiency, and sustainable resource usage.


editor by CX 2024-01-10
China Professional Oilless Oil Free Piston Air Compressor for Medical Oxygen Concentrator 3L air compressor lowes
Product Description
Oilless Oil free piston Air Compressor for Medical Oxygen Concentrator 3L
Advantages:
Oil-less Vacuum Pumps / Air Compressors
PRANSCH oil-less rocking piston pump and air compressor combines the best characteristics of traditional piston pumps(air compressor) and diaphragm pumps into small units with excellent features.
- Light weight and very portable
- Durable and near ZERO maintenance
- Thermal protection (130 deg C)
- Power cord with plug, 1m length
- Shock mount
- Silencer – muffler
- Stainless steel vacuum and pressure gauge, both with oil damping
- Two stainless steel needle valves each with lock nut.
- All nickel plated fittings
- Power supply 230V, 50/60 Hz
This series is ideal for use in applications where oil-mist is undesirable. For examples, pressure/vacuum filtration, air sampling, water aeration, flame photometer, etc.
Specification:
| Model | Frequency | Flow | Pressure | Power | Speed | Current | Voltage | Heat | Sound | Weight | Hole | Installation Dimensions |
| Hz | L/min | Kpa | Kw | Min-1 | A | V | 0 C | db(A) | Kg | MM | MM | |
| PM200C | 50 | 50 | 200 | 0.12 | 1380 | 0.45 | 210/235 | 5-40 | 48 | 1.8 | M5 | L100xW74 |
| 60 | 58 | 200 | 0.13 | 1450 | 0.90 | 110/125 | 5-40 | 48 | 1.8 | M5 | ||
| PM300C | 50 | 75 | 300 | 0.15 | 1380 | 0.76 | 210/235 | 5-40 | 45 | 3.2 | M6 | L118xW70 |
| 60 | 90 | 300 | 0.16 | 1450 | 1.52 | 110/125 | 5-40 | 45 | 3.2 | M6 | ||
| PM550C | 50 | 105 | 600 | 0.32 | 1380 | 1.50 | 210/235 | 5-40 | 56 | 6.0 | M6 | L148xW83 |
| 60 | 115 | 600 | 0.35 | 1450 | 3.00 | 110/125 | 5-40 | 56 | 6.0 | M6 | ||
| PM1200C | 50 | 120 | 300 | 0.45 | 1380 | 1.70 | 210/235 | 5-40 | 58 | 7.6 | M6 | L203xW86 |
| 60 | 145 | 300 | 0.49 | 1450 | 3.50 | 110/125 | 5-40 | 58 | 7.6 | M6 | ||
| PM1400C | 50 | 160 | 700 | 0.45 | 1380 | 1.70 | 210/235 | 5-40 | 58 | 8.5 | M6 | L203xW86 |
| 60 | 180 | 700 | 0.49 | 1450 | 3.50 | 110/125 | 5-40 | 58 | 8.5 | M6 | ||
| PM2000C | 50 | 230 | 800 | 0.55 | 1380 | 2.50 | 210/235 | 5-40 | 60 | 10.0 | M6 | L203xW86 |
| 60 | 250 | 800 | 0.60 | 1450 | 5.20 | 110/125 | 5-40 | 60 | 10.0 | M6 | ||
| HP2400C | 50 | 240 | 900 | 0.90 | 1380 | 3.30 | 210/235 | 5-40 | 75 | 17.0 | M7 | L246xW127 |
| 60 | 258 | 900 | 1.00 | 1450 | 6.80 | 110/125 | 5-40 | 75 | 17.0 | M7 | ||
| PM3000C | 50 | 250 | 1000 | 1.50 | 1380 | 4.20 | 210/235 | 5-40 | 76 | 17.5 | M7 | L246xW127 |
| 60 | 270 | 1000 | 1.70 | 1450 | 9.00 | 110/125 | 5-40 | 76 | 17.5 | M7 |
Why use a Rocking Piston Product?
Variety
Pransch oilless Rocking Piston air compressors and vacuum pumps, available in single, twin, miniature, and tankmounted
styles, are the perfect choice for hundreds of applications. Choose from dual frequency, shaded pole,
and permanent split capacitor (psc) electric motors with AC multi-voltage motors to match North American,
European, and CHINAMFG power supplies. A complete line of recommended accessories as well as 6, 12, and
24 volt DC models in brush and brushless types are also available.
Performance
The rocking piston combines the best characteristics of piston and diaphragm air compressors into a small unit
with exceptional performance. Air flow capabilities from 3.4 LPM to 5.5 CFM (9.35 m3/h), pressure to 175 psi
(12.0 bar) and vacuum capabilities up to 29 inHg (31 mbar). Horsepowers range from 1/20 to 1/2 HP
(0.04 to 0.37 kW).
Reliable
These pumps are made to stand up through years of use. The piston rod and bearing assembly are bonded
together, not clamped; they will not slip, loosen, or misalign to cause trouble.
Clean Air
Because CHINAMFG pumps are oil-free, they are ideal for use in applications in laboratories, hospitals, and the
food industry where oil mist contamination is undesirable.
Application:
- Transportation application include:Auto detailing Equipment,Braking Systems,Suspension Systems,Tire Inflators
- Food and Beverage application include:beverage dispensing,coffee and Espresso equipment,Food processing and packaging,Nitrogen Generation
- Medical and laboratory application include:Body fluid Analysis equipment,Dental compressors and hand tools,dental vacuum ovens,Dermatology equipment,eye surgery equipment,lab automation,Liposuction equipment,Medical aspiration,Nitrogen Generation,Oxygen concentrators,Vacuum Centrifuge,vacuum filtering,ventilators
- General industrial application include:Cable pressurization,core drilling
- Environmental application include:Dry sprinkler systems,Pond Aeration,Refrigerant Reclamation,Water Purification Systems
- Printing and packaging application include:vacuum frames
- material Handling application include:vacuum mixing
| Lubrication Style: | Oil-free |
|---|---|
| Cooling System: | Air Cooling |
| Structure Type: | Closed Type |
| Compress Level: | Single-Stage |
| Refrigerant Type: | Air |
| Material: | Steel |
| Customization: |
Available
|
|
|---|
.webp)
Are There Specific Water Treatment Requirements for Water-Lubricated Compressors?
Water-lubricated compressors often have specific water treatment requirements to ensure optimal performance, prevent equipment damage, and maintain the desired water quality. Here’s a detailed explanation of the water treatment considerations for water-lubricated compressors:
Water Quality:
- Purity: The water used for lubrication should be clean and free from impurities, contaminants, or excessive minerals. Impurities in the water can lead to corrosion, blockages, and reduced lubrication effectiveness. Water sources should be evaluated to ensure they meet the required purity standards.
- Chemical Composition: The chemical composition of the water should be within acceptable limits to avoid any adverse reactions with compressor components or lubricants. Certain water characteristics, such as pH, alkalinity, hardness, and conductivity, need to be monitored and controlled to prevent issues like scaling, fouling, or chemical reactions.
Water Treatment Methods:
- Filtration: Filtration systems are commonly used to remove particulate matter, sediment, or debris from the water. Filters can range from simple strainers to more advanced filtration systems, depending on the specific water quality requirements and the level of filtration needed.
- Water Softening: If the water has high levels of hardness minerals, such as calcium and magnesium, water softening methods may be necessary. Water softeners use ion exchange or other processes to remove the hardness minerals, which can help prevent scaling and reduce the risk of deposits in the compressor system.
- Reverse Osmosis (RO): Reverse osmosis is a water treatment method that uses a semi-permeable membrane to remove dissolved solids, ions, and impurities from the water. RO systems can effectively reduce the total dissolved solids (TDS) and improve the overall water quality, making it suitable for water-lubricated compressors.
- Chemical Treatment: In some cases, chemical treatments may be required to control water chemistry parameters, such as pH or alkalinity. Chemical additives can be used to adjust or stabilize water chemistry within the desired range, preventing corrosion, scaling, or other issues.
Water treatment requirements for water-lubricated compressors can vary depending on factors such as the compressor design, operating conditions, water source quality, and specific application requirements. It is essential to consult the compressor manufacturer’s recommendations and guidelines regarding water treatment. The manufacturer’s guidelines will provide specific information on water quality limits, treatment methods, and any required maintenance procedures related to water treatment.
Regular monitoring of water quality, including periodic testing and analysis, is recommended to ensure that the water treatment measures are effective and the desired water quality is maintained. Water treatment systems should be properly maintained and periodically serviced to ensure their optimal performance and prevent any potential issues that could affect the operation and longevity of water-lubricated compressors.
.webp)
Can Water-Lubricated Compressors Be Integrated into Existing Systems?
Yes, water-lubricated compressors can be integrated into existing systems, but certain considerations need to be taken into account. Here’s a detailed explanation of integrating water-lubricated compressors into existing systems:
Space and Compatibility:
- Physical Space: Before integrating a water-lubricated compressor into an existing system, it’s important to assess the available physical space. Water-lubricated compressors may require additional components such as water pumps, filters, and separators, which need to be accommodated within the existing system layout.
- Compatibility: Compatibility between the water-lubricated compressor and the existing system is crucial. Factors such as pressure ratings, flow rates, electrical requirements, and control systems should be evaluated to ensure a seamless integration. It may be necessary to make modifications or upgrades to the existing system to achieve compatibility.
Water Supply:
- Water Source: Integrating a water-lubricated compressor requires a suitable water source. The availability of a clean and reliable water supply should be assessed. The water source can be from a municipal water supply, a well, or other water storage systems depending on the specific requirements of the compressor.
- Water Treatment: If the existing water supply does not meet the necessary quality standards for the water-lubricated compressor, water treatment systems may need to be installed. Water treatment can involve filtration, softening, or chemical treatment to ensure the water is clean and suitable for lubrication.
Installation and Configuration:
- Professional Installation: Integrating a water-lubricated compressor into an existing system typically requires professional installation. Qualified technicians or engineers with experience in water-lubricated compressors should handle the installation process to ensure proper configuration and alignment with the existing system.
- Piping and Connections: The installation may involve connecting the water-lubricated compressor to the existing piping system. Proper sizing, materials, and connections should be used to maintain the integrity of the system and prevent leaks or pressure losses.
System Performance and Optimization:
- System Evaluation: After integrating the water-lubricated compressor, it’s important to evaluate the overall performance of the system. This includes assessing the compressor’s efficiency, lubrication effectiveness, cooling capacity, and any potential impacts on the existing components.
- System Adjustments: Depending on the findings of the system evaluation, adjustments or fine-tuning may be necessary to optimize the performance of the integrated water-lubricated compressor. This can involve adjusting operating parameters, control settings, or making additional modifications to enhance system efficiency and reliability.
Overall, integrating water-lubricated compressors into existing systems is possible with proper planning, evaluation, and professional installation. Considering factors such as space availability, compatibility, water supply, installation requirements, and system optimization will help ensure a successful integration and the effective operation of the water-lubricated compressor within the existing system.
.webp)
What is a water lubrication air compressor?
A water lubrication air compressor, also known as a water-injected air compressor, is a type of compressor that utilizes water as a lubricant and cooling medium in its operation. Unlike traditional air compressors that rely on oil for lubrication, water lubrication air compressors offer specific advantages and are commonly used in certain applications. Here’s an overview of how water lubrication air compressors work and their key characteristics:
Working Principle:
In a water lubrication air compressor, the compression process involves injecting a controlled amount of water into the compression chamber. The water acts as a lubricant and cooling agent, ensuring smooth operation and preventing excessive heat buildup. As the air is compressed, the water lubricates the internal components, reducing friction and wear.
Advantages:
1. Reduced Environmental Impact: One of the significant advantages of water lubrication air compressors is their reduced environmental impact. These compressors eliminate the need for oil lubrication, resulting in lower oil consumption and the elimination of oil-related contamination risks. This makes them a more environmentally friendly option, particularly in applications where oil contamination must be avoided, such as in food processing or pharmaceutical industries.
2. Enhanced Air Quality: Water lubrication air compressors produce cleaner compressed air compared to oil-lubricated compressors. The absence of oil in the compression process eliminates the risk of oil carryover into the air system. This is essential in applications where clean and oil-free compressed air is required, such as in electronics manufacturing or spray painting.
3. Improved Energy Efficiency: Water lubrication air compressors can offer improved energy efficiency compared to oil-lubricated compressors. The water injected during the compression process helps in cooling the air, reducing the energy required for subsequent cooling and drying processes. This can lead to energy savings and lower operating costs.
4. Lower Maintenance Requirements: Water lubrication air compressors generally have lower maintenance requirements compared to oil-lubricated compressors. The absence of oil means no oil changes or oil filter replacements, simplifying maintenance tasks and reducing costs. However, regular checks and maintenance of the water filtration system are necessary to ensure the water quality and prevent any potential contamination issues.
Applications:
Water lubrication air compressors are commonly used in applications where clean and oil-free compressed air is critical. Some typical applications include:
- Food and beverage processing
- Pharmaceutical manufacturing
- Electronics manufacturing
- Spray painting and coating
- Laboratories and research facilities
- Dental offices
These compressors provide a reliable and environmentally friendly solution for industries and applications that require high-quality compressed air without oil contamination.


editor by CX 2023-12-14
China Standard Quick Delivery Piston Compressor Oilless Air Compressor for Medical Instruments air compressor for sale
Product Description
Product Overview
Well-stocked Oolless air compressor Pure copper wire motor
MANVAC oil-free piston vacuum pump has achieved technological breakthroughs such as low noise, strong performance and low energy consumption, and its long service time and simple maintenance are its characteristics.
FEATURES AT A GLANCE
* Ultra quiet,Light Volume
* Strong steam drainage ability
* Mnintenance is easy
* Continuous operation in the field of energy corresponding to the pressure
PRODUCT SPECIFICATIONS
|
|
50HZ |
60HZ |
|
FLOW(L/min) |
100 |
100 |
|
PRESSURE(KPA) |
-92 |
-92 |
|
POWER(KW) |
0.32 |
0.32 |
|
SPEED(RPM) |
1380 |
1450 |
|
CURRENT(A) |
1.50 |
1.50 |
|
VOLTAGE(V) |
110V/220-240V |
110V/220-240V |
|
HOLE(MM) |
6 |
6 |
|
HEAT(°C) |
5-40 |
5-40 |
|
SOUND(DB) |
56 |
56 |
|
WEIGHT(KG) |
6.0 |
6.0 |
|
DIEMENSIONS(MM) |
L147*W83 |
|
|
DIMENSIONS(MM) |
L242*W97*H162 |
|
PRODUCT CONFIGURATION
| High efficiency transformer | High-quality rubber cushion | External silencer |
| Copper wire energy-saving motor | 6061 aluminum alloy conduit effectively prevents water mist erosion. | Rapid heat dissipation and stable work for a long time |
APPLICATION
FAQ
Q.1: When I get my products, is there anything I should pay attention to ?
It need to clear the filter once every 2 months.Whenuse it, it need to handle with care and pay more attention to waterproof.
Q.2 : Can I buy the sample to test?
We are pleased tosend the samples for your evaluation.And the samples shipping freight can be return back to you with next bulk order .
Q.3: Do you have test records of every pump?
We will inspect products 3 times before shipment and every pump have the testrecords. We will keep these test records to our quality traceability system about 3-5 years. Test items : workmanship, air flow rate, power,
pressure, current, noise, vibration , temperature and durability etc.
Q.4: How long is the life of the your pump?
“Quality is ourculture”, our compressor with long life (12000 hours ) and high quality ( stable air flow, import spare parts, high workmanshipetc ).
Q.5: What’s your warranty?
Our warranty is 2 years.It means that if our machine has any problems within 1 years, we will send you new 1 or free spare parts for your replacement.
Q.6: Question : How many years of your factory?
Our factory has theproduction experience more than 20 years. We make main spare parts of compressor by ourselves (include the motor), so we cancontrol the compressor quality very well
Q.7: Question: Can you produce products same/ similar with mine?
We have professional and experienced R & D team, so we can better serve customers to achieve high-end customization and development. We accept the ODM and OEM.
| After-sales Service: | 1yers |
|---|---|
| Warranty: | 1yers |
| Lubrication Style: | Oil-less |
| Samples: |
US$ 120/Piece
1 Piece(Min.Order) | Order Sample 1
|
|---|
| Customization: |
Available
|
|
|---|
.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}
|
Shipping Cost:
Estimated freight per unit. |
about shipping cost and estimated delivery time. |
|---|
| Payment Method: |
|
|---|---|
|
Initial Payment Full Payment |
| Currency: | US$ |
|---|
| Return&refunds: | You can apply for a refund up to 30 days after receipt of the products. |
|---|
.webp)
What role do air dryers play in compressed air systems?
Air dryers play a crucial role in compressed air systems by removing moisture and contaminants from the compressed air. Compressed air, when generated, contains water vapor from the ambient air, which can condense and cause issues in the system and end-use applications. Here’s an overview of the role air dryers play in compressed air systems:
1. Moisture Removal:
Air dryers are primarily responsible for removing moisture from the compressed air. Moisture in compressed air can lead to problems such as corrosion in the system, damage to pneumatic tools and equipment, and compromised product quality in manufacturing processes. Air dryers utilize various techniques, such as refrigeration, adsorption, or membrane separation, to reduce the dew point of the compressed air and eliminate moisture.
2. Contaminant Removal:
In addition to moisture, compressed air can also contain contaminants like oil, dirt, and particles. Air dryers help in removing these contaminants to ensure clean and high-quality compressed air. Depending on the type of air dryer, additional filtration mechanisms may be incorporated to enhance the removal of oil, particulates, and other impurities from the compressed air stream.
3. Protection of Equipment and Processes:
By removing moisture and contaminants, air dryers help protect the downstream equipment and processes that rely on compressed air. Moisture and contaminants can negatively impact the performance, reliability, and lifespan of pneumatic tools, machinery, and instrumentation. Air dryers ensure that the compressed air supplied to these components is clean, dry, and free from harmful substances, minimizing the risk of damage and operational issues.
4. Improved Productivity and Efficiency:
Utilizing air dryers in compressed air systems can lead to improved productivity and efficiency. Dry and clean compressed air reduces the likelihood of equipment failures, downtime, and maintenance requirements. It also prevents issues such as clogging of air lines, malfunctioning of pneumatic components, and inconsistent performance of processes. By maintaining the quality of compressed air, air dryers contribute to uninterrupted operations, optimized productivity, and cost savings.
5. Compliance with Standards and Specifications:
Many industries and applications have specific standards and specifications for the quality of compressed air. Air dryers play a vital role in meeting these requirements by ensuring that the compressed air meets the desired quality standards. This is particularly important in industries such as food and beverage, pharmaceuticals, electronics, and automotive, where clean and dry compressed air is essential for product integrity, safety, and regulatory compliance.
By incorporating air dryers into compressed air systems, users can effectively control moisture and contaminants, protect equipment and processes, enhance productivity, and meet the necessary quality standards for their specific applications.
.webp)
Can air compressors be used for medical and dental applications?
Yes, air compressors can be used for various medical and dental applications. Compressed air is a reliable and versatile utility in healthcare settings, providing power for numerous devices and procedures. Here are some common applications of air compressors in medical and dental fields:
1. Dental Tools:
Air compressors power a wide range of dental tools and equipment, such as dental handpieces, air syringes, air scalers, and air abrasion devices. These tools rely on compressed air to generate the necessary force and airflow for effective dental procedures.
2. Medical Devices:
Compressed air is used in various medical devices and equipment. For example, ventilators and anesthesia machines utilize compressed air to deliver oxygen and other gases to patients. Nebulizers, used for respiratory treatments, also rely on compressed air to convert liquid medications into a fine mist for inhalation.
3. Laboratory Applications:
Air compressors are used in medical and dental laboratories for various purposes. They power laboratory instruments, such as air-driven centrifuges and sample preparation equipment. Compressed air is also used for pneumatic controls and automation systems in lab equipment.
4. Surgical Tools:
In surgical settings, compressed air is employed to power specialized surgical tools. High-speed air-driven surgical drills, saws, and bone-cutting instruments are commonly used in orthopedic and maxillofacial procedures. Compressed air ensures precise control and efficiency during surgical interventions.
5. Sterilization and Autoclaves:
Compressed air is essential for operating sterilization equipment and autoclaves. Autoclaves use steam generated by compressed air to sterilize medical instruments, equipment, and supplies. The pressurized steam provides effective disinfection and ensures compliance with rigorous hygiene standards.
6. Dental Air Compressors:
Specialized dental air compressors are designed specifically for dental applications. These compressors have features such as moisture separators, filters, and noise reduction mechanisms to meet the specific requirements of dental practices.
7. Air Quality Standards:
In medical and dental applications, maintaining air quality is crucial. Compressed air used in healthcare settings must meet specific purity standards. This often requires the use of air treatment systems, such as filters, dryers, and condensate management, to ensure the removal of contaminants and moisture.
8. Compliance and Regulations:
Medical and dental facilities must comply with applicable regulations and guidelines regarding the use of compressed air. These regulations may include requirements for air quality, maintenance and testing procedures, and documentation of system performance.
It is important to note that medical and dental applications have specific requirements and standards. Therefore, it is essential to choose air compressors and associated equipment that meet the necessary specifications and comply with industry regulations.
.webp)
What is the purpose of an air compressor?
An air compressor serves the purpose of converting power, typically from an electric motor or an engine, into potential energy stored in compressed air. It achieves this by compressing and pressurizing air, which can then be used for various applications. Here’s a detailed explanation of the purpose of an air compressor:
1. Powering Pneumatic Tools: One of the primary uses of an air compressor is to power pneumatic tools. Compressed air can be used to operate a wide range of tools, such as impact wrenches, nail guns, paint sprayers, sanders, and drills. The compressed air provides the necessary force and energy to drive these tools, making them efficient and versatile.
2. Supplying Clean and Dry Air: Air compressors are often used to supply clean and dry compressed air for various industrial processes. Many manufacturing and production operations require a reliable source of compressed air that is free from moisture, oil, and other contaminants. Air compressors equipped with appropriate filters and dryers can deliver high-quality compressed air for applications such as instrumentation, control systems, and pneumatic machinery.
3. Inflating Tires and Sports Equipment: Air compressors are commonly used for inflating tires, whether it’s for vehicles, bicycles, or sports equipment. They provide a convenient and efficient method for quickly filling tires with the required pressure. Air compressors are also used for inflating sports balls, inflatable toys, and other similar items.
4. Operating HVAC Systems: Air compressors play a crucial role in the operation of heating, ventilation, and air conditioning (HVAC) systems. They provide compressed air for controlling and actuating dampers, valves, and actuators in HVAC systems, enabling precise regulation of air flow and temperature.
5. Assisting in Industrial Processes: Compressed air is utilized in various industrial processes. It can be used for air blow-off applications, cleaning and drying parts, powering air-operated machinery, and controlling pneumatic systems. Air compressors provide a reliable and efficient source of compressed air that can be tailored to meet the specific requirements of different industrial applications.
6. Supporting Scuba Diving and Breathing Systems: In scuba diving and other breathing systems, air compressors are responsible for filling diving tanks and supplying breathable air to divers. These compressors are designed to meet strict safety standards and deliver compressed air that is free from contaminants.
Overall, the purpose of an air compressor is to provide a versatile source of compressed air for powering tools, supplying clean air for various applications, inflating tires and sports equipment, supporting industrial processes, and facilitating breathing systems in specific contexts.


editor by CX 2023-11-08
China factory Oilless Oil-Free Screw Scroll Piston Applications Laser Cutting Organic Fertilizer Production Tire Production Equipment Air Compressor best air compressor
Product Description
Oilless oil-free Screw Scroll Piston applications laser cutting organic fertilizer production tire production equipment air compressor
Application of Air Compressor
Air compressors are used in a wide variety of applications, including:
- Construction: Air compressors are used on construction sites to power pneumatic tools such as drills, hammers, and saws. They are also used to inflate tires, clean surfaces, and power air-powered nail guns.
- Manufacturing: Air compressors are used in manufacturing to power pneumatic tools and equipment. They are also used to blow off dust and debris, and to provide compressed air for a variety of other applications.
- Automotive: Air compressors are used in automotive shops to power pneumatic tools such as impact wrenches, air ratchets, and tire inflators. They are also used to clean and detail vehicles.
- Agriculture: Air compressors are used in agriculture to power pneumatic tools such as sprayers, dusters, and air drills. They are also used to inflate tires and to clean equipment.
- Medical: Air compressors are used in medical facilities to power pneumatic tools such as drills, saws, and syringes. They are also used to inflate hospital beds and to provide compressed air for a variety of other medical applications.
- Other: Air compressors are used in a variety of other applications, such as in the food and beverage industry, the oil and gas industry, and the mining industry.
When choosing an air compressor, it is important to consider the specific application for which it will be used. Air compressors come in a variety of sizes and capacities, and it is important to choose 1 that is the right size for the job. It is also important to consider the type of air compressor that is best suited for the application. There are 3 main types of air compressors: reciprocating compressors, rotary screw compressors, and centrifugal compressors. Reciprocating compressors are the most common type of air compressor. They are relatively inexpensive and easy to maintain. However, they can be noisy and vibrate. Rotary screw compressors are more expensive than reciprocating compressors, but they are quieter and vibrate less. Centrifugal compressors are the most expensive type of air compressor, but they are the most efficient. They are also the quietest and least likely to vibrate.
Air compressors are a versatile tool that can be used in a variety of applications. When choosing an air compressor, it is important to consider the specific application for which it will be used.
| After-sales Service: | Installation Guide 1-Year Warranty |
|---|---|
| Warranty: | Installation Guide 1-Year Warranty |
| Principle: | Rotary Compressor |
| Application: | Back Pressure Type, Intermediate Back Pressure Type, High Back Pressure Type, Low Back Pressure Type |
| Performance: | Low Noise, Variable Frequency, Explosion-Proof |
| Mute: | Mute |
| Samples: |
US$ 9999/Piece
1 Piece(Min.Order) | |
|---|
.webp)
Can Water-Lubricated Compressors Be Used in High-Pressure Applications?
Water-lubricated compressors can be used in high-pressure applications, but there are certain considerations and limitations to keep in mind. Here’s a detailed explanation:
Water-lubricated compressors are typically designed for lower to medium-pressure ranges. They are commonly used in applications where the required discharge pressure does not exceed a certain threshold, typically up to a few hundred pounds per square inch (psi). However, there are specialized water-lubricated compressors available that can handle higher pressures, depending on the specific design and construction.
The ability of a water-lubricated compressor to operate at high pressures depends on several factors:
- Compressor Design: The design and construction of the compressor play a crucial role in determining its maximum pressure rating. Compressors designed for high-pressure applications need to have robust components, such as reinforced casings, high-strength materials, and proper sealing mechanisms to withstand the elevated pressures. Special attention should be given to the design of the water-lubricated bearing system to ensure it can handle the increased loads and pressures.
- Water Supply and Cooling: High-pressure compressors generate more heat during the compression process, requiring efficient cooling mechanisms to maintain safe operating temperatures. Sufficient water supply and cooling capacity must be available to handle the increased heat load. Adequate flow rates, temperature control, and cooling methods, such as water jackets or external cooling systems, may be necessary to prevent overheating and ensure proper lubrication and cooling of the compressor components.
- Water Quality: The quality of the water used for lubrication becomes even more critical in high-pressure applications. Any impurities, contaminants, or minerals present in the water can cause increased wear, corrosion, or blockages, jeopardizing the compressor’s performance and reliability. Water treatment or filtration systems may be required to maintain the desired water quality and prevent damage to the compressor.
- Sealing and Leakage Control: As the pressure increases, it becomes more challenging to maintain effective sealing and prevent leakage in the compressor system. Proper sealing mechanisms, such as high-quality seals and gaskets, are essential to ensure minimal leakage and maintain the required pressure levels. Adequate monitoring and maintenance of the sealing components are necessary to prevent energy losses and ensure the compressor’s efficiency.
It’s worth noting that for extremely high-pressure applications, water-lubricated compressors may not be the most suitable choice. In such cases, alternative lubrication methods, such as oil or specialized lubricants, are often preferred to handle the extreme pressures and provide adequate lubrication and cooling.
When considering the use of water-lubricated compressors in high-pressure applications, it is crucial to consult with the compressor manufacturer or a qualified engineer to ensure that the chosen compressor model is specifically designed and rated for the desired pressure range. Proper installation, maintenance, and adherence to the manufacturer’s guidelines are essential to ensure the safe and efficient operation of the compressor in high-pressure conditions.
.webp)
How Are Water-Lubricated Air Compressors Used in Automotive Applications?
Water-lubricated air compressors find various applications in the automotive industry. Here’s a detailed explanation of how they are used in automotive applications:
Tire Inflation:
- Service Stations: Water-lubricated air compressors are commonly used in automotive service stations for tire inflation. They provide a reliable source of compressed air for quickly and efficiently inflating tires to the recommended pressure. The water lubrication system in these compressors helps to reduce friction and wear on internal components, ensuring smooth operation and extended lifespan.
- Tire Shops: Tire shops often utilize water-lubricated air compressors as part of their tire service equipment. These compressors can supply compressed air for tire inflation, tire mounting and demounting machines, and other pneumatic tools used in tire service and maintenance.
Painting and Finishing:
- Spray Painting: Water-lubricated air compressors are also used in automotive painting and finishing processes. Compressed air is used to power spray guns that apply paint or coatings to vehicles during the painting process. The water lubrication system helps maintain the cleanliness of the compressor and prevents oil contamination, ensuring high-quality paint finishes.
- Sanding and Polishing: Compressed air is often used for sanding and polishing automotive surfaces. Water-lubricated air compressors provide a reliable source of compressed air for pneumatic sanders, polishers, and other air-powered tools used in automotive surface preparation and refinishing.
Brake and Suspension Systems:
- Brake Bleeding: Water-lubricated air compressors can be used during brake bleeding procedures in automotive repair and maintenance. Compressed air is used to purge air bubbles from the brake system, ensuring optimal brake performance and pedal feel. The water lubrication system helps maintain the purity of the compressed air, preventing contamination that could affect the brake system’s functionality.
- Suspension Systems: Air suspension systems in vehicles often rely on compressed air for operation. Water-lubricated air compressors provide a continuous supply of clean and lubricated compressed air for inflating and maintaining the air springs or airbags used in vehicle suspensions.
Diagnostic and Testing Equipment:
- Diagnostic Tools: Water-lubricated air compressors are utilized in automotive diagnostic and testing equipment. Compressed air is used to operate pneumatic diagnostic tools, such as vacuum testers, pressure gauges, and leak detectors, that help diagnose and troubleshoot various vehicle systems.
- Testing and Calibration: Automotive testing and calibration equipment, such as dynamometers and emission testing devices, often require a source of compressed air. Water-lubricated air compressors supply the necessary compressed air for precise and accurate testing of vehicle performance, emissions, and other parameters.
Overall, water-lubricated air compressors play a significant role in various automotive applications, including tire inflation, painting and finishing, brake and suspension systems, and diagnostic and testing equipment. Their use helps ensure efficient and reliable operation, improved productivity, and high-quality results in automotive service, repair, and manufacturing processes.
.webp)
Are Water Lubrication Air Compressors More Environmentally Friendly?
Water lubrication in air compressors offers several environmental benefits compared to traditional lubrication methods. Here are some reasons why water lubrication is considered more environmentally friendly:
- Non-toxic and biodegradable: Water is a natural substance that is non-toxic and biodegradable. It does not contain harmful chemicals or additives that can pollute the air or water systems. When water lubricants are used in air compressors, there is a reduced risk of environmental contamination.
- Reduced air pollution: Traditional lubricants, such as oils or synthetic lubricants, can release volatile organic compounds (VOCs) into the air during operation. VOCs contribute to air pollution and can have detrimental effects on human health and the environment. Water lubrication eliminates the release of VOCs, resulting in improved air quality and reduced air pollution.
- Minimized water pollution: Water lubrication does not introduce additional pollutants into water systems. Unlike oils or synthetic lubricants, water does not leave behind harmful residues or contaminants that can contaminate water sources. This helps to protect aquatic ecosystems and maintain water quality.
- Energy efficiency: Water lubrication can contribute to energy efficiency in air compressors. Water has excellent heat transfer properties, allowing for efficient dissipation of heat generated during compressor operation. By effectively managing heat, water lubrication helps to reduce energy consumption and improve overall compressor efficiency.
- Sustainable resource: Water is a renewable resource that is readily available in nature. Unlike oil or synthetic lubricants, which require extraction and processing, water can be sourced sustainably. This reduces the reliance on finite resources and promotes a more sustainable approach to lubrication in air compressors.
Overall, water lubrication in air compressors is considered more environmentally friendly due to its non-toxic nature, reduced air and water pollution, energy efficiency, and sustainable resource usage.


editor by CX 2023-10-19