Product Description
Product Description
HS series compressors are designed in accordance with the subtropical high temperature and high humidity working environment, and the optimized cooling design ensures that the unit can operate normally in a high temperature environment of 46°C.
Product Feature
1. Adhering to the concept of pursuing high-quality products, HS series compressors are designed in accordance with the subtropical high temperature and high humidity working environment, and the optimized cooling design ensures that the unit can operate continuously and normally in a high temperature environment of 46 °C.
2. Adopt the world-renowned CHINAMFG main motor. The protection grade is IP55. The insulation grade is F grade 100.
3. The gas circuit adopts the stainless steel pipe design of the American SAE standard, with low resistance and strong corrosion resistance, which completely eliminates the common problems of oil leakage, air leakage and air leakage under high pressure.
4. The patented synchronous two-stage compression technology is adopted, so that the compression ratio of each stage of the screw host is less than 6, which is lower than that of the ordinary screw air compressor, which ensures the service life of the screw host.
5. Each stage of the screw host has an independent oil cooling system and an automatic water removal system to ensure that the screw host can run stably around the clock.
6. The powerful third-generation e-Control controller has 6 operation monitoring points to comprehensively monitor the working conditions of the main engine, air filter, oil filter, oil separator, cooler and other important components, so that the compressor can run stably.
Specification
| Mode | HSV75A (W)-40 | HSV90A (W)-40 | HSV110A (W)-40 | HSV132A (W)-40 |
| Operating Pressure Bar (g) | 40 | 40 | 40 | 40 |
| Motor speed (kw) | 75 | 90 | 110 | 132 |
| Exhaust volume (m³/min) | 5.5 | 7.2 | 9.0 | 10.0 |
| Cooling method | water cooling | water cooling | water cooling | water cooling |
| Noise dB(A) | 72(75) | 74(78) | 74(78) | 74(78) |
| Length | 2550 | 3150 | 3150 | 3150 |
| Width | 1480 | 1880 | 1880 | 1880 |
| Height | 1850 | 1850 | 1850 | 1850 |
| Mode | HSV75A (W)-35 | HSV110A (W)-30 | HSV55A-25 | HSV90A-25 |
| Operating Pressure Bar(g) | 35 | 30 | 25 | 25 |
| Motor speed (kw) | 75 | 110 | 55 | 90 |
| Exhaust volume (m³/min) | 7.6 | 11.0 | 5.4 | 9.5 |
| Cooling method | air cooling (water cooling ) | air cooling(water cooling ) | 74(78) | air cooling |
| Noise dB(A) | 72(75) | 74(78) | 72(75) | 74(78) |
| Length | 2550 | 3150 | 2550 | 3150 |
| Width | 1480 | 1880 | 1480 | 1880 |
| Height | 1850 | 1850 | 1850 | 1850 |
| Mode | HSV180A-25 | HSV110A (W)-20 | ||
| Operating Pressure Ba(g) | 25 | 20 | ||
| Motor speed (kw) | 180 | 110 | ||
| Exhaust volume (m³/min) | 19.0 | 12.5 | ||
| Cooling method | air cooling(water cooling ) | air cooling(water cooling ) | ||
| Noise dB(A) | 78(82) | 74(78) | ||
| Length | 3980 | 3150 | ||
| Width | 1980 | 1880 | ||
| Height | 1980 | 1850 |
/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
| After-sales Service: | Online |
|---|---|
| Warranty: | 3000hours |
| Lubrication Style: | Lubricated |
| Customization: |
Available
|
|
|---|
.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}
|
Shipping Cost:
Estimated freight per unit. |
about shipping cost and estimated delivery time. |
|---|
| Payment Method: |
|
|---|---|
|
Initial Payment Full Payment |
| Currency: | US$ |
|---|
| Return&refunds: | You can apply for a refund up to 30 days after receipt of the products. |
|---|
.webp)
What Are the Safety Considerations When Using Water-Lubricated Compressors?
When using water-lubricated compressors, it is important to prioritize safety to prevent accidents, ensure the well-being of personnel, and maintain the integrity of the equipment. Here’s a detailed explanation of the safety considerations:
- Electrical Safety: Compressed air systems, including water-lubricated compressors, often involve electrical components and connections. Ensure that the electrical systems are properly installed, grounded, and protected according to applicable electrical codes and regulations. Regularly inspect electrical components, such as motors, switches, and wiring, for any signs of damage or wear that could pose electrical hazards.
- Pressure Safety: Water-lubricated compressors can operate at high pressures, presenting potential hazards. Follow the manufacturer’s guidelines and ratings to ensure that the compressor is operated within its specified pressure limits. Install and maintain pressure relief valves to prevent overpressurization and ensure the safe release of excess pressure. Regularly inspect pressure gauges, fittings, and connections for leaks, damage, or signs of degradation.
- Heat and Cooling Safety: Compressed air systems generate heat during the compression process, and proper cooling is essential to maintain safe operating temperatures. Ensure that cooling mechanisms, such as water jackets or external cooling systems, are functioning correctly and provide adequate cooling capacity. Monitor and control the temperature of the compressed air and the cooling water to prevent overheating and minimize the risk of equipment damage or failure.
- Water Quality and Treatment: The quality of the water used for lubrication is crucial for the performance and safety of water-lubricated compressors. Impurities, contaminants, or minerals in the water can lead to corrosion, blockages, or reduced lubrication effectiveness. Implement appropriate water treatment or filtration systems to maintain the desired water quality. Regularly monitor water quality and perform necessary maintenance and treatment to prevent potential safety and performance issues.
- Maintenance and Inspection: Establish a routine maintenance and inspection program for the water-lubricated compressor system. Regularly inspect the compressor, water distribution system, filters, and other components for any signs of wear, damage, or deterioration. Follow the manufacturer’s recommended maintenance procedures, including lubrication, filter replacement, and system checks. Promptly address any identified issues to prevent safety hazards and maintain the reliable operation of the compressor.
- Training and Personal Protective Equipment (PPE): Proper training of personnel who operate and maintain water-lubricated compressors is essential for safety. Ensure that operators and maintenance personnel are trained on the safe operation of the equipment, emergency procedures, and hazard identification. Provide appropriate personal protective equipment (PPE), such as safety glasses, gloves, and hearing protection, to minimize the risk of injuries from potential hazards, including high-pressure water, rotating parts, or noise.
It is important to consult applicable safety regulations, codes, and guidelines specific to your location and industry when using water-lubricated compressors. Additionally, follow the manufacturer’s instructions, warnings, and safety recommendations provided with the equipment to ensure the safe operation of water-lubricated compressors and mitigate potential risks.
.webp)
What Are the Considerations for Choosing Water-Lubricated vs. Oil-Lubricated Compressors?
When selecting between water-lubricated and oil-lubricated compressors, several considerations come into play. Here’s a detailed explanation of the key factors to consider when choosing between these two types:
Operating Environment:
- Water Sensitivity: Water-lubricated compressors are well-suited for environments where water is readily available and can be easily supplied to the compressor system. On the other hand, oil-lubricated compressors are more suitable for applications where water is not readily available or where water contamination could pose a problem.
- Cleanliness Requirements: If the application demands a high level of cleanliness, such as in certain manufacturing processes or cleanroom environments, water-lubricated compressors may be preferred. Water is inherently cleaner than oil and reduces the risk of oil contamination in sensitive operations.
Maintenance and Service:
- Lubricant Replacement: Oil-lubricated compressors require regular oil changes and maintenance to ensure proper lubrication and performance. Water-lubricated compressors, on the other hand, eliminate the need for oil changes and associated maintenance tasks, simplifying the maintenance requirements.
- Oil Contamination: Oil-lubricated compressors carry the risk of oil contamination in the compressed air system. This can be a concern in certain applications where oil contamination can negatively impact product quality or downstream equipment. Water-lubricated compressors reduce the risk of oil contamination, making them advantageous in such applications.
Environmental Impact:
- Oil Disposal: Oil-lubricated compressors generate used oil that requires proper disposal in accordance with environmental regulations. Water-lubricated compressors eliminate the need for oil disposal, contributing to a reduced environmental impact.
- Energy Efficiency: In terms of energy efficiency, water-lubricated compressors tend to have an advantage. Water has a higher specific heat capacity than oil, meaning it can absorb and dissipate heat more effectively. This can result in improved cooling efficiency and potentially lower energy consumption compared to oil-lubricated compressors.
Application-Specific Factors:
- Operating Pressure: Water-lubricated compressors are generally suitable for lower to moderate operating pressures. Oil-lubricated compressors, on the other hand, can handle higher operating pressures, making them more appropriate for applications that require higher pressure levels.
- Temperature Sensitivity: Water-lubricated compressors may have limitations in applications where low temperatures are encountered. Water freezing or becoming slushy can cause operational issues. Oil-lubricated compressors, with appropriate low-temperature oil formulations, can better handle such temperature-sensitive conditions.
Cost Considerations:
- Initial Cost: Water-lubricated compressors generally have a lower initial cost compared to oil-lubricated compressors. This cost advantage can be attractive for applications with budget constraints.
- Maintenance Cost: Over the long term, water-lubricated compressors may have lower maintenance costs due to the elimination of oil changes and associated maintenance tasks. However, it’s important to consider the specific maintenance requirements and costs associated with each type of compressor.
By considering these factors, including the operating environment, maintenance and service requirements, environmental impact, application-specific factors, and cost considerations, one can make an informed decision when choosing between water-lubricated and oil-lubricated compressors.
.webp)
Are Water-Lubricated Air Compressors Suitable for Food and Beverage Industries?
Water-lubricated air compressors can be highly suitable for the food and beverage industries due to several reasons:
- Food-grade lubrication: Water is a natural and food-grade lubricant. It does not introduce harmful contaminants or chemicals into the production process, ensuring the safety and quality of food and beverage products. Water lubrication eliminates the risk of oil contamination in food products that can occur with oil-lubricated compressors.
- Compliance with hygiene standards: The food and beverage industries have strict hygiene standards and regulations. Water-lubricated air compressors align with these standards as water is a clean and sanitary lubricant. It minimizes the risk of cross-contamination and helps maintain a hygienic production environment.
- Reduced risk of product contamination: Water lubrication eliminates the possibility of oil carryover or oil vapor entering the compressed air system. This reduces the risk of oil contamination in food and beverage products, ensuring their purity and quality.
- Improved product shelf life: Oil-lubricated compressors can release oil aerosols or vapors that may negatively affect the taste, odor, or quality of food and beverage products. Water-lubricated compressors eliminate this concern, contributing to improved product shelf life and maintaining the desired sensory attributes.
- Easy cleanup and maintenance: Water lubrication simplifies cleanup and maintenance procedures in food and beverage production facilities. Water does not leave behind sticky residues or require extensive cleaning processes. It facilitates faster and more efficient cleaning, reducing downtime and improving overall productivity.
- Environmental friendliness: Water is a sustainable and environmentally friendly lubricant choice. It is non-toxic, biodegradable, and does not contribute to air or water pollution. Using water-lubricated air compressors aligns with the sustainability goals of the food and beverage industries.
Considering these factors, water-lubricated air compressors are well-suited for the food and beverage industries, ensuring compliance with hygiene standards, preventing product contamination, and promoting a safe and sustainable production environment.


editor by CX 2024-02-15
China high quality Factory Supply High Quality Printing Dry Oil Free Screw Air Compressor 5.5kw Medical Air Compressor small air compressor
Product Description
Factory Supply High Quality printing dry oil free screw air compressor 5.5KW medical air compressor
Technical Parameters Of PM Variable speed screw air compressor:
| Model | Work pressure | Capacity | Power | Noise | Inlet and outlet diameters of cooling water | Water inlet & outlet T/H |
Lubricating water L |
Dimensions | Weight | Air outlet diameter
|
| WZS-06PMA | 0.8 | 0.3~0.78 | 5.5 | 57 | 3/4″ | 1.5 | 10 | 800x800x1100 | 460 | 3/4″ |
| 1.0 | 0.2~0.65 | |||||||||
| WZS-08PMA | 0.8 | 0.35~1.17 | 7.5 | 57 | 3/4″ | 2 | 10 | 800x800x1100 | 510 | 3/4″ |
| 1.0 | 0.3~1.05 | |||||||||
| 1.25 | 0.24~0.81 | |||||||||
| WZS-11PMA | 0.8 | 0.54~1.72 | 11 | 60 | 1″ | 2.5 | 26 | 1200x800x1300 | 620 | 3/4″ |
| 1.0 | 0.45~1.42 | |||||||||
| 1.25 | 0.35~1.10 | |||||||||
| WZS-15PMA | 0.8 | 0.75~2.43 | 15 | 60 | 1″ | 3.5 | 26 | 1200x800x1300 | 670 | 1″ |
| 1.0 | 0.65~2.17 | |||||||||
| 1.25 | 0.6~1.85 | |||||||||
| WZS-18PMA | 0.8 | 0.9~3.13 | 18.5 | 63 | 1″ | 4 | 30 | 1400x1000x1520 | 730 | 1″ |
| 1.0 | 0.9~2.82 | |||||||||
| 1.25 | 0.6~2.05 | |||||||||
| WZS-22PMA | 0.8 | 1.1~3.62 | 22 | 63 | 1 1/2″ | 5 | 30 | 1400x1000x1520 | 780 | 1″ |
| 1.0 | 0.97~3.21 | |||||||||
| 1.25 | 0.85~2.78 | |||||||||
| WZS-30PMA | 0.8 | 1.55~5.12 | 30 | 66 | 1 1/2″ | 7 | 40 | 1500x1150x1500 | 1150 | 1 1/2″ |
| 1.0 | 1.255~4.43 | |||||||||
| 1.25 | 1.1~3.63 | |||||||||
| WZS-37PMA | 0.8 | 1.91~6.30 | 37 | 66 | 1 1/2″ | 9 | 40 | 1500x1150x1500 | 1200 | 1 1/2″ |
| 1.0 | 1.60~5.33 | |||||||||
| 1.25 | 1.42~4.77 | |||||||||
| WZS-45PMA | 0.8 | 2.50~8.30 | 45 | 68 | 1 1/2″ | 10 | 90 | 1800x1300x1750 | 1490 | 2″ |
| 1.0 | 1.91~6.30 | |||||||||
| 1.25 | 1.70~5.56 | |||||||||
| WZS-55PMA | 0.8 | 3.0~9.76 | 55 | 69 | 1 1/2″ | 12 | 100 | 1800x1300x1750 | 1570 | 2″ |
| 1.0 | 2.60~8.55 | |||||||||
| 1.25 | 2.30~7.67 | |||||||||
| WZS-75PMA | 0.8 | 3.95~13.00 | 75 | 72 | 1 1/2″ | 18 | 100 | 1800x1300x1750 | 1750 | 2″ |
| 1.0 | 3.40~11.50 | |||||||||
| 1.25 | 3.0~9.70 | |||||||||
| WZS-90PMA | 0.8 | 5.0~16.60 | 90 | 73 | 1 1/2″ | 20 | 120 | 2200x1550x1800 | 2450 | 2 1/2″ |
| 1.0 | 4.30~14.66 | |||||||||
| 1.25 | 3.72~12.60 | |||||||||
| WZS-110PMA | 0.8 | 6.0~19.97 | 110 | 77 | 1 1/2″ | 24 | 120 | 2200x1550x1800 | 2580 | 2 1/2″ |
| 1.0 | 5.0~16.66 | |||||||||
| 1.25 | 4.65~15.56 | |||||||||
| WZS-132PMA | 0.8 | 6.75~22.52 | 132 | 77 | 2″ | 30 | 120 | 2200x1550x1800 | 2700 | 2 1/2″ |
| 1.0 | 6.0~19.97 | |||||||||
| 1.25 | 5.07~16.90 | |||||||||
| WZS-160PMA | 0.8 | 8.5~28.11 | 160 | 79 | 3″ | 35 | 160 | 3000x1800x2100 | 3900 | 3″ |
| 1.0 | 706~25.45 | |||||||||
| 1.25 | 6.7~22.52 | |||||||||
| WZS-185PMA | 0.8 | 10~33.97 | 185 | 79 | 3″ | 38 | 160 | 3000x1800x2100 | 4050 | 3″ |
| 1.0 | 8.72~29.00 | |||||||||
| 1.25 | 7075~25.210 | |||||||||
| WZS-200PMA | 0.8 | 11.2~36.75 | 200 | 80 | 4″ | 42 | 200 | 3100x1850x2100 | 4200 | 4″ |
| 1.0 | 9.68~32.78 | |||||||||
| 1.25 | 9.2~29.24 | |||||||||
| WZS-220PMA | 0.8 | 12.2~39.67 | 220 | 80 | 4″ | 47 | 200 | 3100x1850x2100 | 4400 | 4″ |
| 1.0 | 11.2~36.75 | |||||||||
| 1.25 | 9.0~29.63 | |||||||||
| WZS-250PMA | 0.8 | 13.5~44.78 | 250 | 80 | 4″ | 53 | 200 | 3100x1850x2100 | 4800 | 4″ |
| 1.0 | 12.3~39.67 | |||||||||
| 1.25 | 10.2~33.97 |
Before quotation:
1.Before quoting, what should users offer?
1).Discharge pressure (Bar, Mpa or Psi)
2).Air discharge/Air flow/Air capacity (m3/min or CFM)
3).Power supply (220/380V, 50/60Hz, 3Phase)
2.If I don’t know the pressure and air flow, what should I do?
1).Take the picture of nameplate, we will advise the suitable air compressor to you.
2).Tell us what industry you are, we can advise the suitable 1 (so as to air tank / air dryer / air filters).
High Efficiency PM Motor and Energy Saving
*With the high-performance permanent magnet material, PM motor won’t lose magnetism even under 120°c and can run for more than 15 years.
*No motor bearing: permanent magnet rotors is installed directly on the stretch out shaft of Male rotor. This structure doesn’t have the bearing and eliminates the motor bearing fault.
*Comparing to normal variable speed motor, the permanent magnet synchronous motor performs with even better energy efficiency. Especially in the low-speed condition, it can still maintain a high motor efficiency.
SHIPPING
Delivery: time 5-25 working days after payment receipt confirmed(based on actual quantity)
packing:standard export packing. or customized packing as your
Professional: goods shipping forwarder.
FAQ
Q: OEM/ODM, or customers logo printed is available?
Yes, OEM/ODM, customers logo is welcomed.
Q: Delivery date?
Usually 5-25 workdays after receiving deposit, specific delivery date based on order quantity
Q: what’s your payment terms?
Regularly doing 30% deposit and 70% balance by T/T, Western Union, Paypal, other payment terms also can be discussed based on our cooperation.
Q: How to control your quality?
We have professional QC team, control the quality during the mass production and inspect completely goods before shipping.
Q: If we don’t have shipping forwarder in China, would you do this for us?
We can offer you best shipping line to ensure you can get the goods timely at best price.
Q: come to China before, can you be my guide in China?
We are happy to provide you orservice, such as booking ticket, pick up at the airport, booking hotel, accompany visiting market or factory
/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
| Lubrication Style: | Oil-free |
|---|---|
| Cooling System: | Air Cooling |
| Power Source: | AC Power |
| Cylinder Position: | Vertical |
| Structure Type: | Closed Type |
| Installation Type: | Stationary Type |
| Customization: |
Available
|
|
|---|
.webp)
How Do Water-Lubricated Air Compressors Contribute to Energy Savings?
Water-lubricated air compressors can contribute to energy savings in several ways, making them an attractive option for industries looking to optimize their energy consumption. Here are the key ways in which water-lubricated compressors help achieve energy efficiency:
- Reduced friction and improved efficiency: Water serves as a lubricant in water-lubricated compressors, creating a thin film between moving parts to reduce friction. This reduces the energy losses due to mechanical friction and improves the overall efficiency of the compressor. Compared to oil-lubricated compressors, water-lubricated models can achieve higher mechanical efficiency, translating into energy savings over the compressor’s operational lifetime.
- Elimination of oil vapor carryover: Oil-lubricated compressors require oil filtration systems to prevent oil carryover into the compressed air stream. These filtration systems consume energy and can introduce pressure drops. In contrast, water-lubricated compressors eliminate the need for oil filtration, reducing energy consumption associated with filtration equipment and minimizing pressure losses. This leads to improved system efficiency and energy savings.
- Improved heat transfer and cooling: Water-lubricated compressors offer enhanced heat transfer capabilities compared to oil-lubricated counterparts. Water has a higher specific heat capacity and thermal conductivity, allowing for more efficient heat dissipation. This results in lower operating temperatures and reduces the energy required for cooling the compressor. By optimizing heat transfer, water-lubricated compressors can minimize energy consumption associated with cooling systems or air conditioning in compressor rooms.
- Optimized system design: Water-lubricated compressors often employ advanced system designs that further enhance energy efficiency. For example, they may incorporate variable speed drive (VSD) technology, which adjusts the compressor’s speed and power consumption based on the actual air demand. This eliminates energy waste associated with constant-speed operation and reduces energy consumption during periods of low compressed air demand. Additionally, water-lubricated compressors may feature optimized internal components and improved air flow dynamics, resulting in reduced energy losses and improved overall system efficiency.
- Heat recovery opportunities: Water-lubricated compressors can provide opportunities for heat recovery. The heat generated during compression can be captured and utilized for various heating applications within the facility, such as space heating, water heating, or process heating. By harnessing this waste heat, water-lubricated compressors contribute to energy savings by offsetting the need for additional energy sources for heating purposes.
By combining these energy-saving features, water-lubricated air compressors help optimize energy consumption, reduce operational costs, and minimize the environmental impact associated with compressed air systems. Implementing water-lubricated compressors with a comprehensive energy management strategy can result in significant energy savings and improved overall sustainability for industrial operations.
.webp)
Are There Any Potential Water-Related Issues with These Compressors?
Yes, there are potential water-related issues that can arise with water-lubricated compressors. Here’s a detailed explanation of some of the common water-related issues associated with these compressors:
Corrosion:
- Internal Corrosion: Water-lubricated compressors are susceptible to internal corrosion due to the presence of water within the system. If the water used is not properly treated or if corrosion prevention measures are insufficient, the internal components of the compressor can corrode over time. Corrosion can lead to reduced performance, component damage, and the potential for leaks or system failures.
- External Corrosion: External components such as piping, valves, and fittings can also be affected by corrosion if exposed to water and moisture. Corrosion on these external surfaces can lead to compromised integrity, leaks, and reduced system efficiency.
Water Quality:
- Water Contaminants: The quality of the water used in water-lubricated compressors is crucial. If the water contains contaminants such as sediment, debris, oil, or chemicals, it can negatively impact the performance and reliability of the compressor. Contaminants can cause blockages, clogging, increased wear on components, reduced lubrication effectiveness, and potential damage to the compressor.
- Water Hardness: Water hardness, characterized by high mineral content, can lead to scaling and deposits within the compressor and associated components. Scaling can restrict flow, impede heat transfer, and reduce the efficiency of the compressor. It can also contribute to fouling and corrosion issues.
Water Treatment and Filtration:
- Inadequate Water Treatment: Insufficient or improper water treatment can lead to various issues. If the water is not adequately treated for contaminants, hardness, or pH levels, it can result in accelerated corrosion, scaling, fouling, and reduced lubrication effectiveness. Inadequate water treatment can also contribute to increased maintenance requirements and decreased overall compressor performance.
- Filtration System Issues: Filtration systems play a crucial role in removing contaminants from the water. However, if the filtration system is not properly maintained, filters become clogged or damaged, or if there are design or installation issues, it can lead to inadequate filtration and compromised water quality. This can result in the accumulation of contaminants, reduced lubrication performance, and potential damage to the compressor.
Water Supply and Availability:
- Insufficient Water Supply: Water-lubricated compressors rely on a consistent and reliable water supply. If the water supply is insufficient in terms of flow rate, pressure, or quality, it can impact the compressor’s operation and performance. Inadequate water supply can lead to inadequate lubrication, reduced cooling capacity, and increased wear on components.
- Water Source Availability: The availability of a suitable water source is essential for water-lubricated compressors. In certain locations or applications, accessing clean water or meeting specific water quality requirements may pose challenges. Lack of a suitable water source can limit the feasibility or effectiveness of using water-lubricated compressors.
It is important to address these potential water-related issues by implementing proper water treatment, corrosion prevention measures, regular maintenance of filtration systems, and monitoring of water quality. Adhering to manufacturer guidelines, performing regular inspections, and taking proactive measures can help mitigate these issues and ensure the reliable and efficient operation of water-lubricated compressors.
.webp)
Advantages of Using Water as a Lubricant in Air Compressors
Water can be used as a lubricant in air compressors, offering several advantages over traditional lubricants such as oils or synthetic lubricants. Here are some of the advantages:
- Cost-effective: Water is a readily available and inexpensive resource, making it a cost-effective lubricant option for air compressors. Compared to oils or synthetic lubricants, water is significantly cheaper, which can result in cost savings for businesses and industries that heavily rely on air compressors.
- Environmentally friendly: Water is a non-toxic and environmentally friendly lubricant. It does not contain harmful chemicals or pollutants that can contribute to air or water pollution. Using water as a lubricant in air compressors reduces the risk of contamination and minimizes the environmental impact associated with traditional lubricants.
- Improved heat dissipation: Water has excellent heat transfer properties. It can absorb and dissipate heat more efficiently compared to oils or synthetic lubricants. Air compressors generate heat during operation, and using water as a lubricant helps to dissipate this heat effectively, preventing overheating and prolonging the lifespan of the compressor.
- Reduced fire hazard: Compared to oils or synthetic lubricants, water has a significantly higher flash point, which means it is less likely to ignite or contribute to fire hazards. This fire-resistant property of water makes it a safer lubricant choice, especially in environments where fire safety is a concern.
- Lower maintenance requirements: Water does not leave behind sticky residues or deposits, as some oils or synthetic lubricants might. This characteristic reduces the maintenance requirements of air compressors. It simplifies the cleaning process and reduces the frequency of lubricant changes, resulting in reduced downtime and maintenance costs.
Overall, using water as a lubricant in air compressors can offer significant advantages in terms of cost-effectiveness, environmental friendliness, heat dissipation, fire safety, and maintenance requirements.


editor by CX 2023-12-28
China Professional Oil Free Twin Screw VSD Air Compressor Dry Type 200kw air compressor parts
Product Description
REDUCE ENERGY CONSUMPTION
Under different conditions,the demand for gas will float.Through a large number of research and calculation of marketdemandCha nun confirmed it.Only about 10% of applications require stable air supplyTherefore,frequency conversioncompressor can play a greater role in energy saving.
Energy cost often accounts for 70% of the life cycle cost of a compressor. The production of compressed air may account for 40% of all electricity costs in the plant.In almost every factory,the gas consumption will vary with different time periods,with its high and low CHINAMFG periods. permanent magnet variable frequency screw air compressor can supply glass completely according to the requirements of gas consumption,which can not only save a lot of energy, but also protect theenvironment for future generations.
INTERIOR STRUCTURE
CUSTOM OIL
COOLED MOTOR
First-stage energy-efficient motor,Low Noise,IP65 protection grade
AUTOMOTIVE GRADE
PERMANENT MAGNET MOTOR
IE4 high efficiency permanent magnet motor.
AUTOMOTIVE PERMANENT MAGNET MOTOR ForN38UH high grade permanent magnet, IP67 protection grade, and fully enclosed structure uniquevacuum epoxy dipping paint,effectively guaranteeing the stable operation of unit.
CHANUN
CUSTOM CONVERTER
Permanent magnet variable-frequency conversion technology, wide voltage. energy-saving ,with a small impact on the power grid.
7 INCH TOUCH SCREEN
Large touch screen.all-round protection monitoring with functions of motor start/stopcontrol, operation control:reversal protection of air compressor: and multi-point temperature detection and control protection.
HIGH MOBILITY (OPTIONAL)
Easy and flexible to rotate. so that the air compressor is able to move conveniently andquickly (optional)
ZheJiang CHINAMFG Machinery Manufacturing Co. , Ltd. is located in HangZhou, ZheJiang .CHINAMFG is a comprehensive screw air compressor manufacturer that engaged in R & D, design, production and sales. It has a plant of 20,000 square meters, including a large production workshop,a comprehensive first-class exhibition hall and a testing laboratory.
Dukas has excellent mechanical engineering designers, an experienced staff team and a professional management team. The production concept focuses on energy-saving and is committed to perfecting and improving the technological process in order to get the core technology of super frequency energy-saving, achieving the characteristics of mute, durability, power saving and safety.
The company has 9 series of products with multiple models. Including Fixed speed air compressor, PM VSD air compressor, PM VSD two-stage air compressor, 4-in-1 air compressor, Oil free water lubrcating air compressor, Diesel portable screw air compressor, Electric portable screw air compressor, Air dryer, Adsorption machine and the matching spare parts.
Dukas adheres to the business philosophy of cooperation and mutual benefit to provide a one-stop service for every customer!
Dukas air compressors not only cover the domestic market but also are exported to more than 20 countries and regions such as South Africa, Australia, Thailand, Russia, Argentina, Canada and so on.
Dukas products have won a good reputation from users for their excellent quality and style. The company has always adhered to the concept of quality first, service first and dedication to providing every customer with excellent products and meticulous after-sales service!
Dukas warmly welcome customers to visit our factory and establish a wide range of cooperation!
Frequency Asked Question:
Q1: Are you factory or trade company?
A1: We are factory.
Q2: What the exactly address of your factory?
A2: Our Factory is Located in Xihu (West Lake) Dis. County, HangZhou City, ZheJiang Province, China.
Q3: Will you provide spare parts of your products?
A3: Yes, We provide all parts to customer, so you can do repair or maintenance without trouble.
Q4: Can you accept OEM orders?
A4: Yes, with professional design team, OEM orders are highly welcome.
Q5: How long will you take to arrange production?
A5: Immediate delivery for stock products.380V 50HZ we can delivery the goods within 3-15 days. Other voltage or other color we will delivery within 25-30 days.
Q6: Warranty terms of your machine?
A6: Two years warranty for the machine and technical support always according to your needs.
Q7: Can you provide the best price?
A7:According to your order, we will provide you the best price.
| After-sales Service: | 24 Hours |
|---|---|
| Warranty: | 2 Year |
| Lubrication Style: | Lubricated |
| Cooling System: | Air Cooling |
| Power Source: | AC Power |
| Cylinder Position: | Horizontal |
| Customization: |
Available
|
|
|---|
.webp)
How Do You Ensure Proper Water Lubrication in Air Compressors?
Proper water lubrication in air compressors is essential for maintaining their performance, efficiency, and longevity. Here’s a detailed explanation of how to ensure proper water lubrication:
- Use High-Quality Water: Start by using high-quality water for lubrication. Ideally, the water should be clean, free from impurities, and have the appropriate chemical composition. Impurities or contaminants in the water can lead to increased wear, corrosion, and blockages in the compressor. Water treatment or filtration systems may be necessary to ensure the desired water quality.
- Monitor Water Supply: Ensure a consistent and adequate water supply to the compressor. Monitor the flow rate and pressure of the water supply to ensure it meets the requirements of the compressor’s lubrication system. Insufficient water flow can lead to inadequate lubrication, increased friction, and potential damage to the compressor components.
- Implement Proper Water Cooling: Compressed air generates heat during the compression process, and effective cooling is crucial to maintain safe operating temperatures and proper water lubrication. Ensure that the cooling mechanisms, such as water jackets or external cooling systems, are properly designed and sized to provide adequate cooling capacity. Monitor and control the water temperature to prevent overheating and ensure optimal lubrication.
- Optimize Water Distribution: Proper water distribution within the compressor is essential for effective lubrication. Ensure that the water is evenly distributed to all the necessary lubrication points, such as the bearings or other moving parts. Proper design and installation of water distribution systems, including pipes, fittings, and nozzles, are important to achieve uniform water distribution and prevent any dry spots or inadequate lubrication.
- Regular Maintenance: Implement a regular maintenance schedule for the water lubrication system. This includes periodic inspection and cleaning of water filters, strainers, or screens to prevent clogging and maintain proper water flow. Check for any leaks or malfunctions in the water distribution system and promptly address them. Regularly monitor water quality and perform any necessary water treatment or filtration to maintain optimal lubrication conditions.
- Follow Manufacturer Guidelines: Always follow the manufacturer’s guidelines and recommendations for water lubrication. Manufacturers provide specific instructions regarding water quality, flow rates, cooling requirements, and maintenance procedures for their compressors. Adhering to these guidelines ensures that the compressor operates within its intended parameters and maintains proper water lubrication.
By following these practices, you can ensure proper water lubrication in air compressors, promoting efficient operation, minimizing wear and tear, and extending the lifespan of the equipment. Regular monitoring, maintenance, and adherence to manufacturer guidelines are crucial to optimize water lubrication and overall compressor performance.
.webp)
What Are the Considerations for Choosing Water-Lubricated vs. Oil-Lubricated Compressors?
When selecting between water-lubricated and oil-lubricated compressors, several considerations come into play. Here’s a detailed explanation of the key factors to consider when choosing between these two types:
Operating Environment:
- Water Sensitivity: Water-lubricated compressors are well-suited for environments where water is readily available and can be easily supplied to the compressor system. On the other hand, oil-lubricated compressors are more suitable for applications where water is not readily available or where water contamination could pose a problem.
- Cleanliness Requirements: If the application demands a high level of cleanliness, such as in certain manufacturing processes or cleanroom environments, water-lubricated compressors may be preferred. Water is inherently cleaner than oil and reduces the risk of oil contamination in sensitive operations.
Maintenance and Service:
- Lubricant Replacement: Oil-lubricated compressors require regular oil changes and maintenance to ensure proper lubrication and performance. Water-lubricated compressors, on the other hand, eliminate the need for oil changes and associated maintenance tasks, simplifying the maintenance requirements.
- Oil Contamination: Oil-lubricated compressors carry the risk of oil contamination in the compressed air system. This can be a concern in certain applications where oil contamination can negatively impact product quality or downstream equipment. Water-lubricated compressors reduce the risk of oil contamination, making them advantageous in such applications.
Environmental Impact:
- Oil Disposal: Oil-lubricated compressors generate used oil that requires proper disposal in accordance with environmental regulations. Water-lubricated compressors eliminate the need for oil disposal, contributing to a reduced environmental impact.
- Energy Efficiency: In terms of energy efficiency, water-lubricated compressors tend to have an advantage. Water has a higher specific heat capacity than oil, meaning it can absorb and dissipate heat more effectively. This can result in improved cooling efficiency and potentially lower energy consumption compared to oil-lubricated compressors.
Application-Specific Factors:
- Operating Pressure: Water-lubricated compressors are generally suitable for lower to moderate operating pressures. Oil-lubricated compressors, on the other hand, can handle higher operating pressures, making them more appropriate for applications that require higher pressure levels.
- Temperature Sensitivity: Water-lubricated compressors may have limitations in applications where low temperatures are encountered. Water freezing or becoming slushy can cause operational issues. Oil-lubricated compressors, with appropriate low-temperature oil formulations, can better handle such temperature-sensitive conditions.
Cost Considerations:
- Initial Cost: Water-lubricated compressors generally have a lower initial cost compared to oil-lubricated compressors. This cost advantage can be attractive for applications with budget constraints.
- Maintenance Cost: Over the long term, water-lubricated compressors may have lower maintenance costs due to the elimination of oil changes and associated maintenance tasks. However, it’s important to consider the specific maintenance requirements and costs associated with each type of compressor.
By considering these factors, including the operating environment, maintenance and service requirements, environmental impact, application-specific factors, and cost considerations, one can make an informed decision when choosing between water-lubricated and oil-lubricated compressors.
.webp)
How does a water lubrication system work in air compressors?
A water lubrication system in air compressors is designed to provide lubrication and cooling to the internal components of the compressor using water as the lubricant. This system offers an alternative to traditional oil lubrication systems and has specific advantages in certain applications. Here’s a detailed explanation of how a water lubrication system works in air compressors:
1. Water Injection:
In a water lubrication system, a controlled amount of water is injected into the compression chamber of the air compressor. This can be achieved through various methods, such as direct injection or atomization of water droplets.
2. Lubrication:
As the compressed air is generated, the injected water serves as a lubricant for the internal components of the compressor. The water forms a thin film on the surfaces, reducing friction and wear between the moving parts. This lubrication helps to improve the efficiency and lifespan of the compressor.
3. Cooling:
The water injected into the compression chamber also acts as a cooling medium. As the air is compressed, heat is generated, and the injected water absorbs some of this heat. The water carries away the heat, preventing excessive temperature rise and maintaining optimal operating conditions for the compressor.
4. Separation and Filtration:
After serving its lubrication and cooling purposes, the water needs to be separated from the compressed air. The compressed air and water mixture pass through a separator or filtration system, which separates the water from the compressed air. This can involve mechanisms such as centrifugal force, gravity separation, or filtration media.
5. Water Treatment:
In water lubrication systems, proper water treatment is essential to maintain the quality and performance of the system. Water filtration and purification processes are employed to remove impurities, contaminants, and any solid particles present in the water. This ensures that the injected water is clean and free from any substances that could potentially harm the compressor or the downstream air system.
6. Recirculation or Discharge:
Depending on the specific design of the water lubrication system, the separated water can be recirculated back into the system for reuse or discharged from the compressor. Recirculation systems involve the treatment and filtration of the water before reintroducing it into the compression chamber. Discharge systems, on the other hand, may involve further treatment or disposal of the water in an environmentally responsible manner.
By utilizing a water lubrication system, air compressors can benefit from reduced oil consumption, improved air quality, and enhanced energy efficiency. These systems are commonly employed in industries where oil contamination must be avoided, such as food processing, pharmaceutical manufacturing, and electronics production.


editor by CX 2023-11-20
China Professional 15-400 Kw Industrial Silent/Mute Medical Dry Oil Free Air Compressor Oilless Direct Drive Screw Air Compressor arb air compressor
Product Description
HangZhou CHINAMFG Marine Equipment Co., Ltd. covers an area of 24600 square meters, located in jiangyan Economic Development Zone, fumin CHINAMFG Park, with comprehensive test bench and large lifting equipment test bench, is specialized in the production of Marine safety life-saving equipment enterprises.
The company has the leading technology, strict management, fine equipment, strictly by the China Classification Society CCSISO9001:2008 quality management system certification to ensure, the main production: Marine lifeboat/life raft landing gear, gravity inverted boom davit, free landing davit, gangway winch, lifeboat/rescue boat winch, Marine low, medium and high pressure air compressor and all types of fully enclosed/open lifeboat and rescue boat.
HangZhou CHINAMFG Marine Equipment Co., Ltd. is the production of maritime rescue equipment professional enterprise, main products are the life boat winch, the rescue boat winch, free fall type lifeboat launching device, gravity pour davit arm type, single arm liferaft lowered device, single arm boat/raft hanger and cranes, electric, pneumatic) ladder winch and Marine air compressor and various kinds of form a complete set of lifeboat.
Corporate culture: To build the world heavy industry carrier
— Corporate philosophy
Enterprise tenet: synchronizing with the world and consumers
Enterprise vision: strict management, sustainable development and satisfactory service
Enterprise values: The pursuit of quality The pursuit of Haihao
Enterprise spirit: Honesty, diligence and earnest
Haihao ships are interwoven with glory and dream, hardships and challenges, and will continue to burst out brilliant brilliance in continuous development and struggle
Haihao Marine respects every employee’s hard work, creates a level playing field for employees, and gives full play to their potential
Q: What are the available shipping methods?
A: Port location: HangZhou or ZheJiang , China Shipping to: CHINAMFG Shipping method: by sea, by air, by express Estimated delivery dates depend on specific order list, shipping service selected and receipt of cleared payment. Delivery time may vary.
Q: What payment methods are supported?
A: Payment: By T/T, Western Union, Money Gram for samples 100% with the order, for production,30% paid for deposit by before production arrangement, the balance to be paid before shipment. Negotiation is accepted.
Q: How to control the quality of CHINAMFG Products?
A: Products Material: Strictly control the material used, make sure they can meet international requested standards, and maintain long working life.
Semi-finished products inspection: We examine the proudcts100% before finished. Such as Visual Inspection, Thread testing, Leak Testing, and so on.
Production line test: Our engineers will inspect machines and lines at fixed period.
Finished Product Inspection: We do the test according to ISO19879-2005, leakage test, proof test, re-use of components, burst test, cyclic endurance test, vibration test, etc.
QCTeam:A QC team with more than 10 professional and technical personnel. To ensure 100% products checking.
Q: How long is the product date of delivery probably?
A: The different product, as well as the diferent run quantity can affect the date of delivery, but in ordinary circumstances product date of delivery about 30 days. Most of products have stock, contact us anytime to get more information.
Q: How to Custom-made(OEM/ODM)?
A: If you have a new product drawing or a sample, please send to us, and we can custom-made the product as your required. We wllalso provide our professional advices of the products to make the design to be more realized & maximize the performance.
Q: How about the mini order quantity?
A: We don’t have strict requirments on most items, due to we have stock. More information can send us the enquiry list, we check and reply you. For custom-made, MoQ will be adviced due to the specific product.
| After-sales Service: | After-Sales |
|---|---|
| Warranty: | After-Sales |
| Lubrication Style: | Oil-less |
| Cooling System: | Air Cooling |
| Power Source: | AC Power |
| Cylinder Position: | Angular |
| Samples: |
US$ 5000/Piece
1 Piece(Min.Order) | |
|---|
| Customization: |
Available
|
|
|---|
.webp)
How Do Water-Lubricated Air Compressors Contribute to Energy Savings?
Water-lubricated air compressors can contribute to energy savings in several ways, making them an attractive option for industries looking to optimize their energy consumption. Here are the key ways in which water-lubricated compressors help achieve energy efficiency:
- Reduced friction and improved efficiency: Water serves as a lubricant in water-lubricated compressors, creating a thin film between moving parts to reduce friction. This reduces the energy losses due to mechanical friction and improves the overall efficiency of the compressor. Compared to oil-lubricated compressors, water-lubricated models can achieve higher mechanical efficiency, translating into energy savings over the compressor’s operational lifetime.
- Elimination of oil vapor carryover: Oil-lubricated compressors require oil filtration systems to prevent oil carryover into the compressed air stream. These filtration systems consume energy and can introduce pressure drops. In contrast, water-lubricated compressors eliminate the need for oil filtration, reducing energy consumption associated with filtration equipment and minimizing pressure losses. This leads to improved system efficiency and energy savings.
- Improved heat transfer and cooling: Water-lubricated compressors offer enhanced heat transfer capabilities compared to oil-lubricated counterparts. Water has a higher specific heat capacity and thermal conductivity, allowing for more efficient heat dissipation. This results in lower operating temperatures and reduces the energy required for cooling the compressor. By optimizing heat transfer, water-lubricated compressors can minimize energy consumption associated with cooling systems or air conditioning in compressor rooms.
- Optimized system design: Water-lubricated compressors often employ advanced system designs that further enhance energy efficiency. For example, they may incorporate variable speed drive (VSD) technology, which adjusts the compressor’s speed and power consumption based on the actual air demand. This eliminates energy waste associated with constant-speed operation and reduces energy consumption during periods of low compressed air demand. Additionally, water-lubricated compressors may feature optimized internal components and improved air flow dynamics, resulting in reduced energy losses and improved overall system efficiency.
- Heat recovery opportunities: Water-lubricated compressors can provide opportunities for heat recovery. The heat generated during compression can be captured and utilized for various heating applications within the facility, such as space heating, water heating, or process heating. By harnessing this waste heat, water-lubricated compressors contribute to energy savings by offsetting the need for additional energy sources for heating purposes.
By combining these energy-saving features, water-lubricated air compressors help optimize energy consumption, reduce operational costs, and minimize the environmental impact associated with compressed air systems. Implementing water-lubricated compressors with a comprehensive energy management strategy can result in significant energy savings and improved overall sustainability for industrial operations.
.webp)
What Are the Considerations for Choosing Water-Lubricated vs. Oil-Lubricated Compressors?
When selecting between water-lubricated and oil-lubricated compressors, several considerations come into play. Here’s a detailed explanation of the key factors to consider when choosing between these two types:
Operating Environment:
- Water Sensitivity: Water-lubricated compressors are well-suited for environments where water is readily available and can be easily supplied to the compressor system. On the other hand, oil-lubricated compressors are more suitable for applications where water is not readily available or where water contamination could pose a problem.
- Cleanliness Requirements: If the application demands a high level of cleanliness, such as in certain manufacturing processes or cleanroom environments, water-lubricated compressors may be preferred. Water is inherently cleaner than oil and reduces the risk of oil contamination in sensitive operations.
Maintenance and Service:
- Lubricant Replacement: Oil-lubricated compressors require regular oil changes and maintenance to ensure proper lubrication and performance. Water-lubricated compressors, on the other hand, eliminate the need for oil changes and associated maintenance tasks, simplifying the maintenance requirements.
- Oil Contamination: Oil-lubricated compressors carry the risk of oil contamination in the compressed air system. This can be a concern in certain applications where oil contamination can negatively impact product quality or downstream equipment. Water-lubricated compressors reduce the risk of oil contamination, making them advantageous in such applications.
Environmental Impact:
- Oil Disposal: Oil-lubricated compressors generate used oil that requires proper disposal in accordance with environmental regulations. Water-lubricated compressors eliminate the need for oil disposal, contributing to a reduced environmental impact.
- Energy Efficiency: In terms of energy efficiency, water-lubricated compressors tend to have an advantage. Water has a higher specific heat capacity than oil, meaning it can absorb and dissipate heat more effectively. This can result in improved cooling efficiency and potentially lower energy consumption compared to oil-lubricated compressors.
Application-Specific Factors:
- Operating Pressure: Water-lubricated compressors are generally suitable for lower to moderate operating pressures. Oil-lubricated compressors, on the other hand, can handle higher operating pressures, making them more appropriate for applications that require higher pressure levels.
- Temperature Sensitivity: Water-lubricated compressors may have limitations in applications where low temperatures are encountered. Water freezing or becoming slushy can cause operational issues. Oil-lubricated compressors, with appropriate low-temperature oil formulations, can better handle such temperature-sensitive conditions.
Cost Considerations:
- Initial Cost: Water-lubricated compressors generally have a lower initial cost compared to oil-lubricated compressors. This cost advantage can be attractive for applications with budget constraints.
- Maintenance Cost: Over the long term, water-lubricated compressors may have lower maintenance costs due to the elimination of oil changes and associated maintenance tasks. However, it’s important to consider the specific maintenance requirements and costs associated with each type of compressor.
By considering these factors, including the operating environment, maintenance and service requirements, environmental impact, application-specific factors, and cost considerations, one can make an informed decision when choosing between water-lubricated and oil-lubricated compressors.
.webp)
How does a water lubrication system work in air compressors?
A water lubrication system in air compressors is designed to provide lubrication and cooling to the internal components of the compressor using water as the lubricant. This system offers an alternative to traditional oil lubrication systems and has specific advantages in certain applications. Here’s a detailed explanation of how a water lubrication system works in air compressors:
1. Water Injection:
In a water lubrication system, a controlled amount of water is injected into the compression chamber of the air compressor. This can be achieved through various methods, such as direct injection or atomization of water droplets.
2. Lubrication:
As the compressed air is generated, the injected water serves as a lubricant for the internal components of the compressor. The water forms a thin film on the surfaces, reducing friction and wear between the moving parts. This lubrication helps to improve the efficiency and lifespan of the compressor.
3. Cooling:
The water injected into the compression chamber also acts as a cooling medium. As the air is compressed, heat is generated, and the injected water absorbs some of this heat. The water carries away the heat, preventing excessive temperature rise and maintaining optimal operating conditions for the compressor.
4. Separation and Filtration:
After serving its lubrication and cooling purposes, the water needs to be separated from the compressed air. The compressed air and water mixture pass through a separator or filtration system, which separates the water from the compressed air. This can involve mechanisms such as centrifugal force, gravity separation, or filtration media.
5. Water Treatment:
In water lubrication systems, proper water treatment is essential to maintain the quality and performance of the system. Water filtration and purification processes are employed to remove impurities, contaminants, and any solid particles present in the water. This ensures that the injected water is clean and free from any substances that could potentially harm the compressor or the downstream air system.
6. Recirculation or Discharge:
Depending on the specific design of the water lubrication system, the separated water can be recirculated back into the system for reuse or discharged from the compressor. Recirculation systems involve the treatment and filtration of the water before reintroducing it into the compression chamber. Discharge systems, on the other hand, may involve further treatment or disposal of the water in an environmentally responsible manner.
By utilizing a water lubrication system, air compressors can benefit from reduced oil consumption, improved air quality, and enhanced energy efficiency. These systems are commonly employed in industries where oil contamination must be avoided, such as food processing, pharmaceutical manufacturing, and electronics production.


editor by CX 2023-10-27
China Best Sales 90kw Water Cooling High Efficiency Low Noise Industrial Rotary Screw Oil Free Dry Air Compressor air compressor for sale
Product Description
| Specification | ||||||||
| Model | Capacitiy (FAD)M3/min | Power kw | Noise level db | Weight KG | ||||
| 7bar | 8.5bar | 10bar | Water Cooling | Air Cooling | ||||
| OFA1 | OFA15 | 2.4 | 2.1 | 1.8 | 15 | 74 | 1,030 | |
| OFA22 | 3.7 | 3.2 | 2.7 | 22 | 74 | 1,070 | ||
| OFA30 | 4.8 | 4.4 | 4.0 | 30 | 74 | 1,300 | ||
| OFA37 | 5.9 | 5.3 | 5.0 | 37 | 74 | 1,355 | ||
| OFA45 | 7.0 | 6.5 | 6.1 | 45 | 74 | 1,390 | ||
| OFA2 | OFA55 | 9.2 | 7.9 | 7.3 | 55 | 74 | 1,860 | |
| OFA75 | 12.2 | 11.2 | 10.7 | 75 | 74 | 1,935 | ||
| OFA90 | 14.7 | 13.5 | 12.7 | 90 | 74 | 2,000 | ||
| OFA3 | OFA110 | 19.3 | 17.2 | 16.0 | 110 | 74 | 3,660 | |
| OFA132 | 22.9 | 19.5 | 18.8 | 132 | 74 | 3,700 | ||
| OFA4 | OFA160 | 29.4 | 25.7 | 23.8 | 160 | 74 | 5,300 | |
| OFA200 | 36.6 | 33.1 | 30.4 | 200 | 74 | 5,380 | ||
| OFA250 | 44.5 | 41.0 | 37.4 | 250 | 74 | 5,450 | ||
| OFA275 | 47.4 | 43.0 | 41.0 | 275 | 74 | 5,500 | ||
| OFA5 | OFA315 | 51.5 | 47.6 | 46.0 | 315 | 74 | 6,000 | |
| OFA355 | 56.3 | 52.6 | 50.4 | 355 | 74 | 9,050 | ||
| OFW1 | OFW37 | 5.9 | 5.3 | 5.0 | 37 | 74 | 1,355 | |
| OFW45 | 7.0 | 6.5 | 6.1 | 45 | 74 | 1,450 | ||
| OFW2 | OFW55 | 8.8 | 7.9 | 7.3 | 55 | 74 | 1,800 | |
| OFW75 | 11.9 | 11.2 | 10.7 | 75 | 74 | 1,850 | ||
| OFW90 | 14.3 | 13.5 | 12.7 | 90 | 74 | 1,925 | ||
| OFW3 | OFW110 | 19.1 | 17.1 | 16.0 | 110 | 74 | 2,635 | |
| OFW132 | 21.9 | 19.6 | 18.9 | 132 | 74 | 2,760 | ||
| OFW4 | OFW160 | 28.3 | 26.1 | 24.2 | 160 | 74 | 3,850 | |
| OFW200 | 36.1 | 33.1 | 30.4 | 200 | 74 | 4,000 | ||
| OFW250 | 43.1 | 41.0 | 37.0 | 250 | 74 | 4,100 | ||
| OFW275 | 46.4 | 43.0 | 41.0 | 275 | 74 | 4,300 | ||
| OFW5 | OFW315 | 50.9 | 47.6 | 46.0 | 315 | 74 | 6,550 | |
| OFW355 | 56.3 | 52.6 | 50.4 | 355 | 74 | 6,950 | ||
| OFW400 | 62.1 | 57.8 | 55.8 | 400 | 74 | 7,050 | ||
| OFW450 | 76.5 | 71.5 | 63.8 | 450 | 74 | 8,400 | ||
| OFW500 | 83.9 | 78.3 | 73.1 | 500 | 74 | 8,400 | ||
| OFW630 | 102.9 | 95.7 | 89.0 | 630 | 74 | 9,125 | ||
| OFW750 | 122.8 | 109.6 | 101.8 | 750 | 74 | 9,225 | ||
| Company Profile |
ZheJiang Napu compressor Technology Co.,LTD was established in 2012 based in ZheJiang ,specializing in oil-free rotary screw air compressors, offering a wide range of products from airends to compressors .
With over 10 years experience in oil free screw air compressor. NAPU Compressor is compliant with ISO 8573-1, Class 0 standard and audited by TUV Rheinland and China National Quality Inspection Center of Compressor and Refrigerator.
The company is also compliant with ISO 9001:14001 and is CHINAMFG in the domestic market for its quality-driven culture. The oil-free compressors manufactured by the company are used in a variety of sectors including some of our valued clients like CASC-China Aerospace Science Corporation, NORINCO-China North Industries Group, CNNC-China National Nuclear Group, CHANG AN AUTO, SINOPHARM, BYD and CALT and Sino-Chemical etc.
Continuous improvement in productivity and efficiency is our goal, and we continue to offer an extensive services including our own branded oil-free compressor package as well as after-sales services for other leading brands.
| Product Features |
1. In house designed airend
2. 100% oil free air certified by Germany TUV.
3. Double-layer structure to reduce he noise.
4. Air Cooling and Water cooling are available.
5. VSD control are available.
6.Touch Screen PLC with preset running schedule, more intelligent control.
7.OEM&ODM service are accepted
| FAQ |
Q1. Are you trading company or manufacture ?
A: We are professional manufacture of oil free air compressors. More than 20 years of experience in air compressor manufacturing.
Q2. What’s payment term ?
A: T/T, Western Union, Paypal, Credit Card, and etc. Also we could accept USD, RMB, Euro and other currency.
Q3. How about your after-sales service ?
A: 1.We can provide customers with installation and commissioning online instructions.
Q4. How about your warranty?
A: One year for the whole machine and 5 years for screw air end, except consumable spare parts.
Q5. Do you have any certificate ?
A: Yes, we can offer CE ,ISO and certificate as clients’ demande.
Q6. How do you control quality ?
A: 1. The raw materials are strictly inspected
2. Each compressor must pass at least 8 hours of continuous testing before leaving the factory.
Q7.How long could your air compressor be used?
A: Usually, more than over 10 years.
| After-sales Service: | Online Support |
|---|---|
| Warranty: | 12 Months |
| Lubrication Style: | Oil-free |
| Cooling System: | Water Cooling |
| Power Source: | AC Power |
| Cylinder Position: | Horizontal |
| Customization: |
Available
|
|
|---|
.webp)
What are the differences between stationary and portable air compressors?
Stationary and portable air compressors are two common types of air compressors with distinct features and applications. Here are the key differences between them:
1. Mobility:
The primary difference between stationary and portable air compressors is their mobility. Stationary air compressors are designed to be permanently installed in a fixed location, such as a workshop or a factory. They are typically larger, heavier, and not easily movable. On the other hand, portable air compressors are smaller, lighter, and equipped with handles or wheels for easy transportation. They can be moved from one location to another, making them suitable for jobsites, construction sites, and other mobile applications.
2. Power Source:
Another difference lies in the power source used by stationary and portable air compressors. Stationary compressors are usually powered by electricity, as they are designed for continuous operation in a fixed location with access to power outlets. They are connected to the electrical grid or have dedicated wiring. In contrast, portable compressors are available in various power options, including electric, gasoline, and diesel engines. This versatility allows them to operate in remote areas or sites without readily available electricity.
3. Tank Capacity:
Tank capacity is also a distinguishing factor between stationary and portable air compressors. Stationary compressors often have larger storage tanks to store compressed air for extended periods. The larger tanks enable them to deliver a continuous and steady supply of compressed air for longer durations without the need for frequent cycling. Portable compressors, due to their compact size and portability, generally have smaller tank capacities, which may be sufficient for intermittent or smaller-scale applications.
4. Performance and Output:
The performance and output capabilities of stationary and portable air compressors can vary. Stationary compressors are typically designed for high-volume applications that require a consistent and continuous supply of compressed air. They often have higher horsepower ratings, larger motor sizes, and higher air delivery capacities. Portable compressors, while generally offering lower horsepower and air delivery compared to their stationary counterparts, are still capable of delivering sufficient air for a range of applications, including pneumatic tools, inflation tasks, and light-duty air-powered equipment.
5. Noise Level:
Noise level is an important consideration when comparing stationary and portable air compressors. Stationary compressors, being larger and built for industrial or commercial settings, are often equipped with noise-reducing features such as sound insulation and vibration dampening. They are designed to operate at lower noise levels, which is crucial for maintaining a comfortable working environment. Portable compressors, while efforts are made to reduce noise, may produce higher noise levels due to their compact size and portability.
6. Price and Cost:
Stationary and portable air compressors also differ in terms of price and cost. Stationary compressors are generally more expensive due to their larger size, higher power output, and industrial-grade construction. They often require professional installation and may involve additional costs such as electrical wiring and system setup. Portable compressors, being smaller and more versatile, tend to have a lower upfront cost. They are suitable for individual users, contractors, and small businesses with budget constraints or flexible air supply needs.
When selecting between stationary and portable air compressors, it is essential to consider the specific requirements of the intended application, such as mobility, power source availability, air demands, and noise considerations. Understanding these differences will help in choosing the appropriate type of air compressor for the intended use.
.webp)
How do you maintain proper air quality in compressed air systems?
Maintaining proper air quality in compressed air systems is essential to ensure the reliability and performance of pneumatic equipment and the safety of downstream processes. Here are some key steps to maintain air quality:
1. Air Filtration:
Install appropriate air filters in the compressed air system to remove contaminants such as dust, dirt, oil, and water. Filters are typically placed at various points in the system, including the compressor intake, aftercoolers, and before point-of-use applications. Regularly inspect and replace filters to ensure their effectiveness.
2. Moisture Control:
Excessive moisture in compressed air can cause corrosion, equipment malfunction, and compromised product quality. Use moisture separators or dryers to remove moisture from the compressed air. Refrigerated dryers, desiccant dryers, or membrane dryers are commonly employed to achieve the desired level of dryness.
3. Oil Removal:
If the compressed air system utilizes oil-lubricated compressors, it is essential to incorporate proper oil removal mechanisms. This can include coalescing filters or adsorption filters to remove oil aerosols and vapors from the air. Oil-free compressors eliminate the need for oil removal.
4. Regular Maintenance:
Perform routine maintenance on the compressed air system, including inspections, cleaning, and servicing of equipment. This helps identify and address any potential issues that may affect air quality, such as leaks, clogged filters, or malfunctioning dryers.
5. Air Receiver Tank Maintenance:
Regularly drain and clean the air receiver tank to remove accumulated contaminants, including water and debris. Proper maintenance of the tank helps prevent contamination from being introduced into the compressed air system.
6. Air Quality Testing:
Periodically test the quality of the compressed air using appropriate instruments and methods. This can include measuring particle concentration, oil content, dew point, and microbial contamination. Air quality testing provides valuable information about the effectiveness of the filtration and drying processes and helps ensure compliance with industry standards.
7. Education and Training:
Educate personnel working with compressed air systems about the importance of air quality and the proper procedures for maintaining it. Provide training on the use and maintenance of filtration and drying equipment, as well as awareness of potential contaminants and their impact on downstream processes.
8. Documentation and Record-Keeping:
Maintain accurate records of maintenance activities, including filter replacements, drying system performance, and air quality test results. Documentation helps track the system’s performance over time and provides a reference for troubleshooting or compliance purposes.
By implementing these practices, compressed air systems can maintain proper air quality, minimize equipment damage, and ensure the integrity of processes that rely on compressed air.
.webp)
How do oil-lubricated and oil-free air compressors differ?
Oil-lubricated and oil-free air compressors differ in terms of their lubrication systems and the presence of oil in their operation. Here are the key differences:
Oil-Lubricated Air Compressors:
1. Lubrication: Oil-lubricated air compressors use oil for lubricating the moving parts, such as pistons, cylinders, and bearings. The oil forms a protective film that reduces friction and wear, enhancing the compressor’s efficiency and lifespan.
2. Performance: Oil-lubricated compressors are known for their smooth and quiet operation. The oil lubrication helps reduce noise levels and vibration, resulting in a more comfortable working environment.
3. Maintenance: These compressors require regular oil changes and maintenance to ensure the proper functioning of the lubrication system. The oil filter may need replacement, and the oil level should be regularly checked and topped up.
4. Applications: Oil-lubricated compressors are commonly used in applications that demand high air quality and continuous operation, such as industrial settings, workshops, and manufacturing facilities.
Oil-Free Air Compressors:
1. Lubrication: Oil-free air compressors do not use oil for lubrication. Instead, they utilize alternative materials, such as specialized coatings, self-lubricating materials, or water-based lubricants, to reduce friction and wear.
2. Performance: Oil-free compressors generally have a higher airflow capacity, making them suitable for applications where a large volume of compressed air is required. However, they may produce slightly more noise and vibration compared to oil-lubricated compressors.
3. Maintenance: Oil-free compressors typically require less maintenance compared to oil-lubricated ones. They do not need regular oil changes or oil filter replacements. However, it is still important to perform routine maintenance tasks such as air filter cleaning or replacement.
4. Applications: Oil-free compressors are commonly used in applications where air quality is crucial, such as medical and dental facilities, laboratories, electronics manufacturing, and painting applications. They are also favored for portable and consumer-grade compressors.
When selecting between oil-lubricated and oil-free air compressors, consider the specific requirements of your application, including air quality, noise levels, maintenance needs, and expected usage. It’s important to follow the manufacturer’s recommendations for maintenance and lubrication to ensure the optimal performance and longevity of the air compressor.


editor by CX 2023-10-19