Tag Archives: compressor for air

China Professional Medical Air Compressor for Hospital Oil Free Air Compressor for Sale with Great quality

Product Description

COMPANY PROFILE

KY-200KYG Air Compressor (can be customized) :

GENERAL FEATURES:
Permanent magnet inverter compressor because of its energy saving and high efficiency has become a hot and bright spot of the industry, the original air compressor energy consumption on the market, is gradually being the permanent magnet inverter compressor to replace or replacement, users can directly bring cost saveing of 20%-40%.
With the development of science and technology, air compressor is widely used in many industries such as machinery, metallurgy, building materials, electric power, chemical industry, food, textile and so on. However, the air compressor belongs to the high energy consumption equipment, power consumption in some industries accounted for more than 30% og the power consumption of production, it is commonly known as “electric tiger”.
SPECIAL FEATURES:
1,AIR PRESSURE STABILLTY
Due to the use of screw air compressor variable frequency stepless speed regulation characteristics of inverter, inverter controller or regulator through internal PID, can smoothly start; on consumption volatility is relatively large occasions, and can quicklyh adjust the response. Compared with the upper and lower limit switch control of the power frequency operation, the air pressure stability increases exponentially.
2,START NO IMPACT
Because the transducer itself contained the function of soft starter, starting current within the maximum rated current of 1.2 times, compared with the start frequency in general more than 6 times the rated current, start a little impact.
This impact is not only on the grid, the impact of the entire mechanical system, but also greatly reduced.
3,VARIABLE FLOW CONTROL
Power driven air compressor can only work in an exhaust, inverter air compressor can work in a wide range of exhaust. Frequency converter is based on the actual use of gas in real time to adjust the motor speed to control the amount of exhaust.
When the air volume is low, the air compressor can be automatically dormant. thereby greatly redcing the energy loss. The optimized control strategy can further improve the energy saving effect.
4,AC POWER SUPPLY VOLTAGE BETTER
Because of the over modulation technology of the inverter, the output voltage of the motor can be output when the voltage of the AC power supply is low, and the voltage of the output to the motor is too high.
For the generation of power, frequeucy conversion drive can show its advantages.
5,AC POWER SUPPLY VOLTAGE BETTER
Most of the working condition of the frequency conersion system is lower than the rated speed of the work, the host machine noise and wear down, prolongmain- tenance and service life.
If the fan is also driven by frequency conversion, can significantly reduce the nosie of air compressor work.

TECHNICAL PARAMETERS:

Model Power Pressure
(Mpa)
 
Air flow Noise Stage Exit pipe diameter
 
Weight
(KG)
Dimensions
(mm(LxWxH)
 
PE-10AVF 7.5 8 1.0 60±2
 
Single grade
 
3/4
 
280 1000*600*100
10 0.8
PE-20AVF   8 2.2 60±2
 
Single grade
 
1 480 1150*800*1280
10 1.8
PE-30AVF 22 8 3.8 62±2
 
Single grade
 
11/4
 
520 1150*800*1280
10 3.0
PE-40AVF 30 8 5.0
 
63±2 Single grade
 
11/4
 
550 1150*800*1280
10 4.4
PE-50AVF 37 8 6.8
 
63±2 Single grade
 
11/2
 
650 1300*1000*1450
10 5.4
PE-60AVF 45 8 8.0
 
65±2 Single grade
 
11/2
 
750 1300*1000*1450
10 6.8
PE-75AVF   8 9.7 65±2 Single grade
 
2 1200 1700*1270*1500
  10 8.6
PE-100AVF 75 8 13.2 65±2 Single grade
 
2 1350 1700*1270*1500
10 16.1

ENERGY-SAVING EFFECT OF TWO-STAGE COMPRESSION:

According to the engineering thermodynamics theory, it is the most economical for the compressor with isothermal compres-
sion.Two-stage oil-injection screw air compressor is designed based on the above theory, it fully improves the cooling function through oil injection during the two-stage compression, plus the inter-stage cooling, by ensuring the temperature is above the pressure dew point, it can be close to isothermal compression as possible, so as to achieve the energy-saving effect.
At the same time, due to low compression ratio of the two-stage airend, the “internal leakage”is largely reduced in the compression process compared with the single-stage compression airend with the same power and same discharge pressure.On the contrary, the diplacement is increased, which means that the efficiency is increased, and the specific power is reduced.
Compared with the ordinary two-stage permanent magnetic compressor on the market,Moair uses the two-drive and two-stage compres- sion, which directly avoids the power loss inside the gear set.
Energy-saving advantages:
1,To reduce the bearing load, and improve the volumetric efficincy;
2,In the case of partial load operation, it can improve efficiency and become energy saving to a better extent.
3,The energy saving of two-stage screw air compressor is up to 15%-25% than that of the one-stage air compressor, which can save the considerable electricity fees every year.

About shipping

Why choose us?

FAQ:

1.Q:What do you need machine and quotation?

A: According to capacity and factory size ,we can give you details.

2.Q: Are you trading company or manufacturer ?

A:We are factory.

3.Q:How do we pack machine?

  A:Exporting wooden cases

4.Q:Lead time

A:Around 25-30 days after the receipt of your deposit.

 

Type: High Pressure Gun
Usage: Paint Spray Gun, Washing Gun, Hopper Gun, Garden Gun
Working Style: Rotary Type
Air Wrench Type: Pulse pneumatic wrench
Pneumatic Drill Range: Tunnel
Degree of Automation: Automatic
Customization:
Available

|

air compressor

What Are the Key Components of a Water-Lubrication System in Compressors?

A water-lubrication system in compressors typically consists of several key components that work together to provide lubrication and cooling to the compressor. Here’s a detailed explanation of the key components of a water-lubrication system in compressors:

Water Supply:

  • Water Source: The water-lubrication system requires a water source that provides clean and suitable water for lubrication. The water can be sourced from various places such as municipal water supply, well water, or treated water from a dedicated water treatment system.
  • Water Inlet: The water inlet is the entry point where water enters the compressor’s lubrication system. It may include valves, filters, or other components to regulate and control the water flow.

Lubrication System:

  • Water Jackets: Water jackets are channels or passages built into the compressor’s housing or cylinder walls. These jackets allow water to circulate and come into direct contact with the compressor’s moving parts, providing lubrication and cooling. The water jackets help dissipate heat generated during compression and prevent excessive temperatures that could damage the compressor.
  • Water Pump: The water pump is responsible for circulating water through the water jackets and the entire lubrication system. It provides the necessary pressure to ensure adequate water flow and distribution to the compressor’s components.
  • Flow Control Devices: Flow control devices, such as valves or flow restrictors, are often included in the water-lubrication system to regulate and control the water flow rate. These devices help maintain optimal water pressure and flow throughout the system, ensuring effective lubrication and cooling.
  • Water Filters: Water filters are used to remove impurities, sediment, or debris from the water before it enters the lubrication system. They help prevent blockages, protect the compressor’s components from damage, and maintain the quality of the water used for lubrication.
  • Water Separator: A water separator is a component that removes excess water, moisture, or condensate from the compressed air. It ensures that the compressed air leaving the compressor is dry and free from excess water content, preventing potential issues such as corrosion or contamination downstream.

Control and Monitoring:

  • Temperature Sensors: Temperature sensors are used to monitor the temperature of the water and the compressor components. They provide feedback to the control system, allowing for adjustments in water flow or cooling measures if required to maintain optimal operating conditions.
  • Pressure Sensors: Pressure sensors are employed to monitor the water pressure within the lubrication system. They help ensure that the water flow and pressure are within the desired range, allowing for proper lubrication and cooling of the compressor.
  • Control System: A control system, which may include a combination of sensors, valves, and controllers, is responsible for regulating and maintaining the operation of the water-lubrication system. It can monitor various parameters, such as temperature, pressure, and flow, and make adjustments as needed to ensure efficient and safe operation.

Regular maintenance, inspection, and monitoring of the key components of the water-lubrication system are essential to ensure its proper functioning and to prevent any issues that could affect the performance and longevity of the compressor.

air compressor

What Is the Role of Filtration in Water-Lubricated Air Compressors?

Filtration plays a crucial role in water-lubricated air compressors, serving several important purposes. Here’s a detailed explanation of the role of filtration in water-lubricated air compressors:

Contaminant Removal:

  • Particle Filtration: Filtration systems in water-lubricated air compressors are designed to remove particles and contaminants from the water. These can include sediment, rust, debris, and other solid particles that may be present in the water supply. Removing these contaminants is essential to prevent blockages, clogging, and damage to the compressor components.
  • Oil Removal: In some cases, water used in compressors may contain traces of oil or hydrocarbons. Filtration systems can also help remove oil and hydrocarbon contaminants from the water, ensuring that the lubrication system remains clean and effective.

Protection of Components:

  • Lubrication System: Filtration prevents contaminants from reaching the lubrication system of water-lubricated air compressors. This helps maintain the cleanliness and integrity of the lubricant, ensuring optimal lubrication performance and minimizing wear on the compressor’s moving parts. Clean and filtered water can enhance the efficiency and lifespan of the compressor’s lubrication system.
  • Heat Exchangers and Cooling Systems: Water-lubricated compressors often rely on heat exchangers and cooling systems to regulate the temperature of the compressed air and the compressor itself. Filtration helps protect these components by preventing the accumulation of debris and contaminants that can hinder heat transfer and reduce the cooling efficiency. Clean water free from particles and contaminants promotes effective heat exchange and cooling.

Prevention of System Fouling:

  • Scaling and Deposits: Filtration systems also help prevent scaling and deposits that can occur when water with high mineral content or hardness is used. These deposits can accumulate on the internal surfaces of the compressor, heat exchangers, or other components, reducing their efficiency and potentially causing operational issues. By removing impurities and controlling mineral content, filtration minimizes the risk of scaling and deposits.

Extended Equipment Lifespan:

  • Component Protection: By effectively removing contaminants, filtration systems contribute to the protection and longevity of water-lubricated air compressor components. Clean and filtered water reduces the risk of component wear, corrosion, fouling, and blockages, ultimately extending the lifespan of the compressor and reducing maintenance and replacement costs.

Regular Maintenance and Monitoring:

  • Filter Replacement: Filtration systems require regular maintenance, including the replacement or cleaning of filters. The frequency of filter replacement depends on factors such as water quality, usage conditions, and the specific requirements of the compressor manufacturer. Regular maintenance ensures that the filtration system continues to effectively remove contaminants and protect the compressor components.
  • Monitoring Water Quality: Alongside filtration, monitoring the quality of the water used in water-lubricated compressors is essential. This can involve periodic water analysis, measurement of key parameters such as pH or conductivity, and visual inspections. Monitoring helps identify any changes in water quality or potential issues with the filtration system, allowing for timely maintenance or corrective actions.

In summary, filtration plays a critical role in water-lubricated air compressors by removing contaminants, protecting components, preventing system fouling, and extending equipment lifespan. By maintaining clean and filtered water, filtration systems contribute to the efficient operation, reliability, and longevity of water-lubricated compressors.

air compressor

What Maintenance Is Required for Water-Lubricated Air Compressors?

Maintaining water-lubricated air compressors involves several key maintenance tasks to ensure their optimal performance and longevity. Here are the maintenance requirements typically associated with water-lubricated air compressors:

  1. Regular water quality checks: It is essential to monitor the quality of the water used for lubrication in the compressor. Regular water analysis helps identify any potential contaminants, such as minerals or impurities, that may affect compressor performance or lead to corrosion. If necessary, appropriate water treatment measures should be taken to maintain the desired water quality.
  2. Drain and flush water systems: Periodically draining and flushing the water systems of the compressor helps remove any sediment, debris, or accumulated contaminants. This prevents blockages, maintains water flow, and ensures the cleanliness of the system.
  3. Inspect and clean filters: Filters in the water system, such as intake filters or water separation filters, should be inspected regularly and cleaned or replaced as needed. Clean filters help maintain proper water flow, prevent clogging, and protect internal components from damage or corrosion.
  4. Check for leaks: Regularly inspect the compressor system for any signs of water leaks. Leaks can lead to water loss, reduced lubrication performance, and potential damage to the compressor components. Any identified leaks should be promptly repaired to maintain the integrity of the system.
  5. Monitor and maintain proper water levels: Ensure that the water levels in the compressor are maintained within the recommended range. Low water levels can result in inadequate lubrication and increased friction, while high water levels may lead to excessive moisture in the system. Regularly check and adjust the water levels as necessary.
  6. Inspect and maintain cooling systems: Water-lubricated compressors often utilize water for cooling purposes. Inspect and maintain the cooling systems, such as heat exchangers or radiators, to ensure proper heat dissipation. Clean any accumulated debris or deposits that may impede cooling efficiency.
  7. Follow manufacturer guidelines: It is crucial to follow the manufacturer’s maintenance guidelines and recommendations specific to the water-lubricated air compressor model being used. These guidelines may include additional maintenance tasks or intervals that are necessary for optimal performance and warranty compliance.

Regular and proactive maintenance of water-lubricated air compressors helps ensure their reliable operation, extends their lifespan, and minimizes the risk of performance issues or component failures. It is advisable to consult the compressor’s documentation and seek guidance from the manufacturer or a qualified technician to establish a comprehensive maintenance routine specific to the equipment.

China Professional Medical Air Compressor for Hospital Oil Free Air Compressor for Sale   with Great qualityChina Professional Medical Air Compressor for Hospital Oil Free Air Compressor for Sale   with Great quality
editor by CX 2023-11-10

China Standard Quick Delivery Piston Compressor Oilless Air Compressor for Medical Instruments air compressor for sale

Product Description

Product Overview

                                              Well-stocked Oolless air compressor Pure copper wire motor

MANVAC oil-free piston vacuum pump has achieved technological breakthroughs such as low noise, strong performance and low energy consumption, and its long service time and simple maintenance are its characteristics.
 

FEATURES AT A GLANCE

 

* Ultra quiet,Light Volume
 

* Strong steam drainage ability

* Mnintenance is easy

* Continuous operation in the field of energy corresponding to the pressure

 

 

PRODUCT SPECIFICATIONS

 

 

50HZ

60HZ

FLOW(L/min)

100

100

PRESSURE(KPA)

-92

-92

POWER(KW)

0.32

0.32

SPEED(RPM)

1380

1450

CURRENT(A)

1.50

1.50

VOLTAGE(V)

110V/220-240V

110V/220-240V

HOLE(MM)

6

6

HEAT(°C)

5-40

5-40

SOUND(DB)

56

56

WEIGHT(KG)

6.0

6.0

DIEMENSIONS(MM)

L147*W83

DIMENSIONS(MM)

L242*W97*H162

PRODUCT CONFIGURATION

High efficiency transformer High-quality rubber cushion External silencer

 

 

Copper wire energy-saving motor 6061 aluminum alloy conduit effectively prevents water mist erosion. Rapid heat dissipation and stable work for a long time

 

APPLICATION

FAQ

Q.1: When I get my products, is there anything I should pay attention to ?

It need to clear the filter once every 2 months.Whenuse it, it need to handle with care and pay more attention to waterproof.

 

Q.2 : Can I buy the sample to test?

We are pleased tosend the samples for your evaluation.And the samples shipping freight can be return back to you with next bulk order .

 

Q.3: Do you have test records of every pump?

We will inspect products 3 times before shipment and every pump have the testrecords. We will keep these test records to our quality traceability system about 3-5 years. Test items : workmanship, air flow rate, power,
pressure, current, noise, vibration , temperature and durability etc.

 

Q.4: How long is the life of the your pump?

“Quality is ourculture”, our compressor with long life (12000 hours ) and high quality ( stable air flow, import spare parts, high workmanshipetc ).

 

Q.5: What’s your warranty?

Our warranty is 2 years.It means that if our machine has any problems within 1 years, we will send you new 1 or free spare parts for your replacement.

 

Q.6: Question : How many years of your factory?

Our factory has theproduction experience more than 20 years. We make main spare parts of compressor by ourselves (include the motor), so we cancontrol the compressor quality very well

 

Q.7: Question: Can you produce products same/ similar with mine?

We have professional and experienced R & D team, so we can better serve customers to achieve high-end customization and development. We accept the ODM and OEM.

 

After-sales Service: 1yers
Warranty: 1yers
Lubrication Style: Oil-less
Samples:
US$ 120/Piece
1 Piece(Min.Order)

|

Order Sample

1
Customization:
Available

|

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

air compressor

What role do air dryers play in compressed air systems?

Air dryers play a crucial role in compressed air systems by removing moisture and contaminants from the compressed air. Compressed air, when generated, contains water vapor from the ambient air, which can condense and cause issues in the system and end-use applications. Here’s an overview of the role air dryers play in compressed air systems:

1. Moisture Removal:

Air dryers are primarily responsible for removing moisture from the compressed air. Moisture in compressed air can lead to problems such as corrosion in the system, damage to pneumatic tools and equipment, and compromised product quality in manufacturing processes. Air dryers utilize various techniques, such as refrigeration, adsorption, or membrane separation, to reduce the dew point of the compressed air and eliminate moisture.

2. Contaminant Removal:

In addition to moisture, compressed air can also contain contaminants like oil, dirt, and particles. Air dryers help in removing these contaminants to ensure clean and high-quality compressed air. Depending on the type of air dryer, additional filtration mechanisms may be incorporated to enhance the removal of oil, particulates, and other impurities from the compressed air stream.

3. Protection of Equipment and Processes:

By removing moisture and contaminants, air dryers help protect the downstream equipment and processes that rely on compressed air. Moisture and contaminants can negatively impact the performance, reliability, and lifespan of pneumatic tools, machinery, and instrumentation. Air dryers ensure that the compressed air supplied to these components is clean, dry, and free from harmful substances, minimizing the risk of damage and operational issues.

4. Improved Productivity and Efficiency:

Utilizing air dryers in compressed air systems can lead to improved productivity and efficiency. Dry and clean compressed air reduces the likelihood of equipment failures, downtime, and maintenance requirements. It also prevents issues such as clogging of air lines, malfunctioning of pneumatic components, and inconsistent performance of processes. By maintaining the quality of compressed air, air dryers contribute to uninterrupted operations, optimized productivity, and cost savings.

5. Compliance with Standards and Specifications:

Many industries and applications have specific standards and specifications for the quality of compressed air. Air dryers play a vital role in meeting these requirements by ensuring that the compressed air meets the desired quality standards. This is particularly important in industries such as food and beverage, pharmaceuticals, electronics, and automotive, where clean and dry compressed air is essential for product integrity, safety, and regulatory compliance.

By incorporating air dryers into compressed air systems, users can effectively control moisture and contaminants, protect equipment and processes, enhance productivity, and meet the necessary quality standards for their specific applications.

air compressor

Can air compressors be used for medical and dental applications?

Yes, air compressors can be used for various medical and dental applications. Compressed air is a reliable and versatile utility in healthcare settings, providing power for numerous devices and procedures. Here are some common applications of air compressors in medical and dental fields:

1. Dental Tools:

Air compressors power a wide range of dental tools and equipment, such as dental handpieces, air syringes, air scalers, and air abrasion devices. These tools rely on compressed air to generate the necessary force and airflow for effective dental procedures.

2. Medical Devices:

Compressed air is used in various medical devices and equipment. For example, ventilators and anesthesia machines utilize compressed air to deliver oxygen and other gases to patients. Nebulizers, used for respiratory treatments, also rely on compressed air to convert liquid medications into a fine mist for inhalation.

3. Laboratory Applications:

Air compressors are used in medical and dental laboratories for various purposes. They power laboratory instruments, such as air-driven centrifuges and sample preparation equipment. Compressed air is also used for pneumatic controls and automation systems in lab equipment.

4. Surgical Tools:

In surgical settings, compressed air is employed to power specialized surgical tools. High-speed air-driven surgical drills, saws, and bone-cutting instruments are commonly used in orthopedic and maxillofacial procedures. Compressed air ensures precise control and efficiency during surgical interventions.

5. Sterilization and Autoclaves:

Compressed air is essential for operating sterilization equipment and autoclaves. Autoclaves use steam generated by compressed air to sterilize medical instruments, equipment, and supplies. The pressurized steam provides effective disinfection and ensures compliance with rigorous hygiene standards.

6. Dental Air Compressors:

Specialized dental air compressors are designed specifically for dental applications. These compressors have features such as moisture separators, filters, and noise reduction mechanisms to meet the specific requirements of dental practices.

7. Air Quality Standards:

In medical and dental applications, maintaining air quality is crucial. Compressed air used in healthcare settings must meet specific purity standards. This often requires the use of air treatment systems, such as filters, dryers, and condensate management, to ensure the removal of contaminants and moisture.

8. Compliance and Regulations:

Medical and dental facilities must comply with applicable regulations and guidelines regarding the use of compressed air. These regulations may include requirements for air quality, maintenance and testing procedures, and documentation of system performance.

It is important to note that medical and dental applications have specific requirements and standards. Therefore, it is essential to choose air compressors and associated equipment that meet the necessary specifications and comply with industry regulations.

air compressor

What is the purpose of an air compressor?

An air compressor serves the purpose of converting power, typically from an electric motor or an engine, into potential energy stored in compressed air. It achieves this by compressing and pressurizing air, which can then be used for various applications. Here’s a detailed explanation of the purpose of an air compressor:

1. Powering Pneumatic Tools: One of the primary uses of an air compressor is to power pneumatic tools. Compressed air can be used to operate a wide range of tools, such as impact wrenches, nail guns, paint sprayers, sanders, and drills. The compressed air provides the necessary force and energy to drive these tools, making them efficient and versatile.

2. Supplying Clean and Dry Air: Air compressors are often used to supply clean and dry compressed air for various industrial processes. Many manufacturing and production operations require a reliable source of compressed air that is free from moisture, oil, and other contaminants. Air compressors equipped with appropriate filters and dryers can deliver high-quality compressed air for applications such as instrumentation, control systems, and pneumatic machinery.

3. Inflating Tires and Sports Equipment: Air compressors are commonly used for inflating tires, whether it’s for vehicles, bicycles, or sports equipment. They provide a convenient and efficient method for quickly filling tires with the required pressure. Air compressors are also used for inflating sports balls, inflatable toys, and other similar items.

4. Operating HVAC Systems: Air compressors play a crucial role in the operation of heating, ventilation, and air conditioning (HVAC) systems. They provide compressed air for controlling and actuating dampers, valves, and actuators in HVAC systems, enabling precise regulation of air flow and temperature.

5. Assisting in Industrial Processes: Compressed air is utilized in various industrial processes. It can be used for air blow-off applications, cleaning and drying parts, powering air-operated machinery, and controlling pneumatic systems. Air compressors provide a reliable and efficient source of compressed air that can be tailored to meet the specific requirements of different industrial applications.

6. Supporting Scuba Diving and Breathing Systems: In scuba diving and other breathing systems, air compressors are responsible for filling diving tanks and supplying breathable air to divers. These compressors are designed to meet strict safety standards and deliver compressed air that is free from contaminants.

Overall, the purpose of an air compressor is to provide a versatile source of compressed air for powering tools, supplying clean air for various applications, inflating tires and sports equipment, supporting industrial processes, and facilitating breathing systems in specific contexts.

China Standard Quick Delivery Piston Compressor Oilless Air Compressor for Medical Instruments   air compressor for saleChina Standard Quick Delivery Piston Compressor Oilless Air Compressor for Medical Instruments   air compressor for sale
editor by CX 2023-11-08

China Professional Heavy Duty Oil Free Powerful Electric Piston Air Compressor New Design Refrigerated Air Dryer for Air Compressor 300 Liter, Air Compressor Machine Prices lowes air compressor

Product Description

Production Introduction:
This seires air compressor widely used in pneumatuic lock, pneumatic tool, tire inflation,blowing process,spray, paint,sand bklsting and fluidic element. 

1) Filling station can be used for fire brigade divers base inflatable station,

2) mine, oil field chemicals, ship, climbing, water sports center industry for human rescue,

3) fire fighting, rescue, underwater operations breathing gas filling is ideal in rescue equipment.

Detail machine pictures, all photoes are for 100% real shooting !
1, Product Show

2, Specification

 AIR COMPRESSOR

Model NO.

V-0.25/8D-150L

Motor Power

2.2/3/5.5(KW/HP)

Cylinder

 φ 65mmX2  

Speed

980rpm/min 

Tank

    150L/39.6Gal       

Pressure

8Bar/115 Psi

Capacity

250L/min(8.8CFM)  

Weight

118KG  

Dimension

1300X430X865mm  

3,Detail show

4, feature:

1) Well-designed specifically for small and medium sized users;

2) The operation is simple, convenient, and less prone to failure;

3) Designed for filling the air available for breathing;

4) Guarantee inflatable gas pure health, no the oil tasteless displacement, high-pressure air filling quickly;

5) Practices can be achieved without power, and to facilitate the field work;

6) Small size, light weight, easy to move quickly;

7) Cost-effective, economical and practical.

8, Company Information
HangZhou  CHINAMFG Machinery Co., Ltd is 1 of the large-scale woodworking machinery manufacturer in China. The company is located in Wangtai town. 

Our company is a comprehensive enterprise which is specialized in research and development, design, manufacturing, sale and service. With advanced production equipment and professional technical staff of research and development, and management. Which is formed a unique management model and the standardization of production process. 

The leading products of woodworking products are CNC router, panel saw series, sanding machine series, woodworking drill machine, Pur wrapping machine, paper sticking machine, vacuum laminating machine, edge banding machine, computer engraving machine and the other series and over 60 standards.  With the scientific management, unique technology, and innovative products to meet customer demands. Our products get a very high reputation from our customers at home and abroad.  Our products are sold across the country and to Russia, Ukraine, Middle-East, South Africa, Southeast Asia, Central Europe and the other countries and areas. We have earned the trust of customers and our product process is in the leading level among the same industry of domestic.  It creates a famous brand called “XINLIHUI” and our products sell well both at home and abroad. It is the most trusted brand to our customers. 
We would like to work a new CHINAMFG development with the insight colleagues and we welcome all the new and old friends to visit our company and crest a brilliant tomorrow together.

 

Lubrication Style: Lubricated
Cooling System: Air Cooling
Cylinder Arrangement: Balanced Opposed Arrangement
Samples:
US$ 140/Piece
1 Piece(Min.Order)

|

Order Sample

Customization:
Available

|

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

air compressor

How Do Water-Lubricated Air Compressors Contribute to Energy Savings?

Water-lubricated air compressors can contribute to energy savings in several ways, making them an attractive option for industries looking to optimize their energy consumption. Here are the key ways in which water-lubricated compressors help achieve energy efficiency:

  1. Reduced friction and improved efficiency: Water serves as a lubricant in water-lubricated compressors, creating a thin film between moving parts to reduce friction. This reduces the energy losses due to mechanical friction and improves the overall efficiency of the compressor. Compared to oil-lubricated compressors, water-lubricated models can achieve higher mechanical efficiency, translating into energy savings over the compressor’s operational lifetime.
  2. Elimination of oil vapor carryover: Oil-lubricated compressors require oil filtration systems to prevent oil carryover into the compressed air stream. These filtration systems consume energy and can introduce pressure drops. In contrast, water-lubricated compressors eliminate the need for oil filtration, reducing energy consumption associated with filtration equipment and minimizing pressure losses. This leads to improved system efficiency and energy savings.
  3. Improved heat transfer and cooling: Water-lubricated compressors offer enhanced heat transfer capabilities compared to oil-lubricated counterparts. Water has a higher specific heat capacity and thermal conductivity, allowing for more efficient heat dissipation. This results in lower operating temperatures and reduces the energy required for cooling the compressor. By optimizing heat transfer, water-lubricated compressors can minimize energy consumption associated with cooling systems or air conditioning in compressor rooms.
  4. Optimized system design: Water-lubricated compressors often employ advanced system designs that further enhance energy efficiency. For example, they may incorporate variable speed drive (VSD) technology, which adjusts the compressor’s speed and power consumption based on the actual air demand. This eliminates energy waste associated with constant-speed operation and reduces energy consumption during periods of low compressed air demand. Additionally, water-lubricated compressors may feature optimized internal components and improved air flow dynamics, resulting in reduced energy losses and improved overall system efficiency.
  5. Heat recovery opportunities: Water-lubricated compressors can provide opportunities for heat recovery. The heat generated during compression can be captured and utilized for various heating applications within the facility, such as space heating, water heating, or process heating. By harnessing this waste heat, water-lubricated compressors contribute to energy savings by offsetting the need for additional energy sources for heating purposes.

By combining these energy-saving features, water-lubricated air compressors help optimize energy consumption, reduce operational costs, and minimize the environmental impact associated with compressed air systems. Implementing water-lubricated compressors with a comprehensive energy management strategy can result in significant energy savings and improved overall sustainability for industrial operations.

air compressor

How Does Water-Lubrication Affect the Lifespan of Air Compressor Components?

Water-lubrication can have both positive and negative effects on the lifespan of air compressor components. Here’s a detailed explanation of how water-lubrication can impact the lifespan of air compressor components:

Positive Effects:

  • Lubrication: Water-lubrication provides effective lubrication to the moving parts of the air compressor, reducing friction and wear. Proper lubrication helps minimize the stress on components such as pistons, cylinders, and bearings, which can contribute to extended component lifespan.
  • Cooling: Water-lubricated systems offer efficient cooling properties. The circulation of water through water jackets or cooling channels helps dissipate heat generated during compression. Effective cooling can prevent excessive temperature rise, reducing the risk of thermal damage and prolonging the lifespan of compressor components.
  • Contaminant Control: Water-lubrication can aid in controlling contaminants within the compressor system. Water acts as a medium to trap and remove particulate matter or debris generated during compressor operation. This helps protect components from potential damage and contributes to their longevity.

Negative Effects:

  • Corrosion: Water-lubrication introduces moisture into the compressor system, which can increase the risk of corrosion. Corrosion can degrade the integrity of components, leading to reduced lifespan and potential failures. Proper corrosion prevention measures, such as using corrosion-resistant materials or implementing water treatment processes, are essential to mitigate this negative effect.
  • Contamination: Although water-lubrication can help control contaminants, it can also introduce impurities and contaminants if the water supply or treatment is not adequately managed. Contaminants such as sediment, minerals, or microbial growth can negatively impact component lifespan by causing blockages, wear, or chemical degradation. Regular maintenance and proper filtration systems are crucial to minimize contamination-related issues.
  • System Complexity: Water-lubricated systems can be more complex than oil-lubricated systems, requiring additional components such as water pumps, filters, and separators. The complexity of the system can introduce more points of failure or maintenance requirements, which, if not addressed properly, can affect the overall lifespan of the compressor components.

Proper maintenance, monitoring, and adherence to manufacturer guidelines are essential to maximize the positive effects and mitigate the negative effects of water-lubrication on air compressor components. Regular inspection, cleaning, lubrication, and water treatment can help ensure optimal operation and prolong the lifespan of the compressor components.

air compressor

Can Water-Lubricated Air Compressors Be Used in Medical Applications?

Water-lubricated air compressors can be used in certain medical applications, offering specific advantages for these environments. Here are some considerations regarding the use of water-lubricated air compressors in medical settings:

  1. Clean and sterile lubrication: Water is a clean and sterile lubricant, making it suitable for medical applications where maintaining a sterile environment is crucial. Water lubrication helps prevent contamination and ensures the integrity of medical products and procedures.
  2. Reduced risk of oil contamination: Oil-lubricated compressors pose a risk of oil carryover and oil vapor entering the compressed air system. This can be problematic in medical applications, where oil contamination could impact patient safety or interfere with sensitive medical equipment. Water-lubricated compressors eliminate this risk, providing a reliable and oil-free compressed air source.
  3. Compatibility with medical gases: Water-lubricated air compressors are compatible with medical gases such as oxygen or nitrous oxide. Unlike oil lubricants, water does not react or contaminate these gases, ensuring their purity and safety in medical procedures.
  4. Hygienic and easy to clean: Water lubrication simplifies cleaning procedures in medical environments. It does not leave behind sticky residues or require harsh chemicals for cleaning. Water-lubricated compressors can be easily cleaned and maintained, promoting a hygienic and safe medical facility.
  5. Reduced risk of fire hazards: Water has a higher flash point compared to oil lubricants, making water-lubricated compressors safer in terms of fire hazards. In medical settings, where fire safety is critical, using water as a lubricant can provide added peace of mind.
  6. Environmental friendliness: Water is a non-toxic and environmentally friendly lubricant choice. It does not contribute to air or water pollution, aligning with the sustainability goals of medical facilities.

While water-lubricated air compressors offer several advantages for medical applications, it’s important to note that specific requirements and regulations may vary depending on the type of medical procedure or equipment involved. It is advisable to consult with medical professionals or equipment manufacturers to ensure the suitability and compliance of water-lubricated air compressors for specific medical applications.

China Professional Heavy Duty Oil Free Powerful Electric Piston Air Compressor New Design Refrigerated Air Dryer for Air Compressor 300 Liter, Air Compressor Machine Prices   lowes air compressorChina Professional Heavy Duty Oil Free Powerful Electric Piston Air Compressor New Design Refrigerated Air Dryer for Air Compressor 300 Liter, Air Compressor Machine Prices   lowes air compressor
editor by CX 2023-11-08

China best Gse Motor Portable Oil Free Mini Air Compressor for Dental 12v air compressor

Product Description

GSE Motor Portable Oil Free Mini Air Compressor For Dental Unit
Features&Advantages:

1.Good quality, bottom price

2.High reliable and durable valve; strong aluminum alloy body.

3.Cylinder:made of high-grade Aluminium, strength, good lubricity.

4.OEM is accepted

 

Specifications:

Voltage

220V/110V

Ampere

3.8A

Power

850W

Frequency

50HZ/60HZ

Exhaust rate

81L/min

Rated exhaust pressure

0.8Mpa

Noise

56-65dB

Bottle dimension

32L

More models for you reference

FAQ: 
1. Q: Are you a factory or trading company? 
A: We are factory.We produce dental chair,dental air compressor and xray machine,and it’s approved CE certificated. 

2. Q: Where is your factory located? How can I visit there? 
A: Our factory is located in HangZhou City,ZheJiang Province,China,near HangZhou.You can fly to Xihu (West Lake) Dis. airport,you can take tax or metro to HangZhou directly.All our clients,from home or abroad,are warmly welcome to visit us! 

3. Q: How can I get Fob or C&F price? 
A: Normally production time of products is from 2 week to 1 month depending on the quantity ordered. If you are sourcing a product, our representative will give you specific information regarding the lead time. If you need a rush order, contact our representatives to discuss your specific needs. 

4. Q: How long is my warranty and what does it cover? 
A: Carry the full 1 year manufacturer warranty. Each warranty period begins at the date of delivery date and ends after 1 year. The warranty varies by option items and manufacturer All warranty claims will be void due to neglect, lack of maintenance, and/or improper handling. 

5. How can I get the after sevice? How can I get the spare part after 1 year warranty? 
A: We welcome your chats online (Chat or leave message: After service) or e-mail to us regarding any technical or related questions that you may have. And we will offer some free sparts for container order. We gurantee keep dental chair units spare parts offer. 

If you want to know more information about our products welcome to contact us in any time, And welcome to our company! 

Contact
Contact person: Allen Song
 

Applicable Departments: Oral Surgery
Certification: ISO, CE
Type: Cleaning & Filling Teeth Equipments
Material: Aluminum
Power: for Two Chair
Certificate: CE
Samples:
US$ 180/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

air compressor

How are air compressors utilized in the aerospace industry?

Air compressors play a crucial role in various applications within the aerospace industry. They are utilized for a wide range of tasks that require compressed air or gas. Here are some key uses of air compressors in the aerospace industry:

1. Aircraft Systems:

Air compressors are used in aircraft systems to provide compressed air for various functions. They supply compressed air for pneumatic systems, such as landing gear operation, braking systems, wing flap control, and flight control surfaces. Compressed air is also utilized for starting aircraft engines and for cabin pressurization and air conditioning systems.

2. Ground Support Equipment:

Air compressors are employed in ground support equipment used in the aerospace industry. They provide compressed air for tasks such as inflating aircraft tires, operating pneumatic tools for maintenance and repair, and powering air-driven systems for fueling, lubrication, and hydraulic operations.

3. Component Testing:

Air compressors are utilized in component testing within the aerospace industry. They supply compressed air for testing and calibrating various aircraft components, such as valves, actuators, pressure sensors, pneumatic switches, and control systems. Compressed air is used to simulate operating conditions and evaluate the performance and reliability of these components.

4. Airborne Systems:

In certain aircraft, air compressors are employed for specific airborne systems. For example, in military aircraft, air compressors are used for air-to-air refueling systems, where compressed air is utilized to transfer fuel between aircraft in mid-air. Compressed air is also employed in aircraft de-icing systems, where it is used to inflate inflatable de-icing boots on the wing surfaces to remove ice accumulation during flight.

5. Environmental Control Systems:

Air compressors play a critical role in the environmental control systems of aircraft. They supply compressed air for air conditioning, ventilation, and pressurization systems, ensuring a comfortable and controlled environment inside the aircraft cabin. Compressed air is used to cool and circulate air, maintain desired cabin pressure, and control humidity levels.

6. Engine Testing:

In the aerospace industry, air compressors are utilized for engine testing purposes. They provide compressed air for engine test cells, where aircraft engines are tested for performance, efficiency, and durability. Compressed air is used to simulate different operating conditions and loads on the engine, allowing engineers to assess its performance and make necessary adjustments or improvements.

7. Oxygen Systems:

In aircraft, air compressors are involved in the production of medical-grade oxygen for onboard oxygen systems. Compressed air is passed through molecular sieve beds or other oxygen concentrator systems to separate oxygen from other components of air. The generated oxygen is then supplied to the onboard oxygen systems, ensuring a sufficient and continuous supply of breathable oxygen for passengers and crew at high altitudes.

It is important to note that air compressors used in the aerospace industry must meet stringent quality and safety standards. They need to be reliable, efficient, and capable of operating under demanding conditions to ensure the safety and performance of aircraft systems.

air compressor

Are there differences between single-stage and two-stage air compressors?

Yes, there are differences between single-stage and two-stage air compressors. Here’s an in-depth explanation of their distinctions:

Compression Stages:

The primary difference between single-stage and two-stage air compressors lies in the number of compression stages they have. A single-stage compressor has only one compression stage, while a two-stage compressor has two sequential compression stages.

Compression Process:

In a single-stage compressor, the entire compression process occurs in a single cylinder. The air is drawn into the cylinder, compressed in a single stroke, and then discharged. On the other hand, a two-stage compressor utilizes two cylinders or chambers. In the first stage, air is compressed to an intermediate pressure in the first cylinder. Then, the partially compressed air is sent to the second cylinder where it undergoes further compression to reach the desired final pressure.

Pressure Output:

The number of compression stages directly affects the pressure output of the air compressor. Single-stage compressors typically provide lower maximum pressure levels compared to two-stage compressors. Single-stage compressors are suitable for applications that require moderate to low air pressure, while two-stage compressors are capable of delivering higher pressures, making them suitable for demanding applications that require greater air pressure.

Efficiency:

Two-stage compressors generally offer higher efficiency compared to single-stage compressors. The two-stage compression process allows for better heat dissipation between stages, reducing the chances of overheating and improving overall efficiency. Additionally, the two-stage design allows the compressor to achieve higher compression ratios while minimizing the work done by each stage, resulting in improved energy efficiency.

Intercooling:

Intercooling is a feature specific to two-stage compressors. Intercoolers are heat exchangers placed between the first and second compression stages. They cool down the partially compressed air before it enters the second stage, reducing the temperature and improving compression efficiency. The intercooling process helps to minimize heat buildup and reduces the potential for moisture condensation within the compressor system.

Applications:

The choice between a single-stage and two-stage compressor depends on the intended application. Single-stage compressors are commonly used for light-duty applications such as powering pneumatic tools, small-scale workshops, and DIY projects. Two-stage compressors are more suitable for heavy-duty applications that require higher pressures, such as industrial manufacturing, automotive service, and large-scale construction.

It is important to consider the specific requirements of the application, including required pressure levels, duty cycle, and anticipated air demand, when selecting between a single-stage and two-stage air compressor.

In summary, the main differences between single-stage and two-stage air compressors lie in the number of compression stages, pressure output, efficiency, intercooling capability, and application suitability.

air compressor

What is the purpose of an air compressor?

An air compressor serves the purpose of converting power, typically from an electric motor or an engine, into potential energy stored in compressed air. It achieves this by compressing and pressurizing air, which can then be used for various applications. Here’s a detailed explanation of the purpose of an air compressor:

1. Powering Pneumatic Tools: One of the primary uses of an air compressor is to power pneumatic tools. Compressed air can be used to operate a wide range of tools, such as impact wrenches, nail guns, paint sprayers, sanders, and drills. The compressed air provides the necessary force and energy to drive these tools, making them efficient and versatile.

2. Supplying Clean and Dry Air: Air compressors are often used to supply clean and dry compressed air for various industrial processes. Many manufacturing and production operations require a reliable source of compressed air that is free from moisture, oil, and other contaminants. Air compressors equipped with appropriate filters and dryers can deliver high-quality compressed air for applications such as instrumentation, control systems, and pneumatic machinery.

3. Inflating Tires and Sports Equipment: Air compressors are commonly used for inflating tires, whether it’s for vehicles, bicycles, or sports equipment. They provide a convenient and efficient method for quickly filling tires with the required pressure. Air compressors are also used for inflating sports balls, inflatable toys, and other similar items.

4. Operating HVAC Systems: Air compressors play a crucial role in the operation of heating, ventilation, and air conditioning (HVAC) systems. They provide compressed air for controlling and actuating dampers, valves, and actuators in HVAC systems, enabling precise regulation of air flow and temperature.

5. Assisting in Industrial Processes: Compressed air is utilized in various industrial processes. It can be used for air blow-off applications, cleaning and drying parts, powering air-operated machinery, and controlling pneumatic systems. Air compressors provide a reliable and efficient source of compressed air that can be tailored to meet the specific requirements of different industrial applications.

6. Supporting Scuba Diving and Breathing Systems: In scuba diving and other breathing systems, air compressors are responsible for filling diving tanks and supplying breathable air to divers. These compressors are designed to meet strict safety standards and deliver compressed air that is free from contaminants.

Overall, the purpose of an air compressor is to provide a versatile source of compressed air for powering tools, supplying clean air for various applications, inflating tires and sports equipment, supporting industrial processes, and facilitating breathing systems in specific contexts.

China best Gse Motor Portable Oil Free Mini Air Compressor for Dental   12v air compressorChina best Gse Motor Portable Oil Free Mini Air Compressor for Dental   12v air compressor
editor by CX 2023-11-07

China supplier 750cfm 510psi Portable Diesel Power Rotary Screw Air Compressor for Heavy Industry air compressor repair near me

Product Description

1.Gas Control System: It is simple and reliable. Inlet rate from 0 to 100% and be adjusted automatically depending on the gas consumption. Automatically adjust the engine throttle to save diesel fuel.

2.Microcomputor Intelligent Control: Air compressor discharge pressure, exhaust gas temperature, engine speed, oil pressure, water temperature and fuel tank level operating parameters with automatic alarm and shutdown protection.

3.Multi-Stage Air Filter and Large Oil-Water Cooler: It is not only suitable for dusty work environment, but it is suitable for high temperature and high altitude environment.

4.Parts and Components: They can be maintained within the accesible range which is convenient and easy.

5.Covenient: Easy to move in rough terrain.Each compressor has lifting rings on the top for safe hoisting and transportation.

Single Stage Compression Portable Diesel Screw Air Compressor
Model Capacity Pressure Diesel Brand Diesel engine type Weight Dimensions
m3/min bar KGS L×W×H mm
SYC-3/7 2.8 7 Xihu (West Lake) Dis. 32kw 1000 2200*1560*1400
SYC-5/7 5 7 XICHAI 41KW 1100 2821X1470X1361
SYC-6/8 6 8 XICHAI 55kW 1400 3750×1920×1700
SYC-7/8 7 8 YUCHAI 4D80-K20,58kW 1400 3750×1920×1700
SYC-8/7 8 7 YUCHAI 65kw 1400 3750×1920×1700
SYC-8/8 8 8 XICHAI 65kw 1400 3750×1920×1700
SYC-9/8 8.8 8 YUCHAI 75kW 1600 3750×1920×1700
SYC-10/7 10 7 YUCHAI YC4D95Z-K20,70kW 1900 3900×1920×1700
SYC-8.5/14 8.5 14 CUMMINS 4BTA3.9-C125,93kW 1900 3900×1920×1900
SYC-10/10 10 10 CUMMINS 4BTA3.9-C125,93kW 1900 3900×1920×1900
SYC-10/13 10 13 CUMMINS 4BTA3.9-C125,93kW 2050 4080×1980×2350
SYC-13/10 13 10 CUMMINS 4BTA3.9-C125,93kW 2050 4080×1980×2350
SYC-12/7 12 7 CUMMINS 4BTA3.9-C125,93kW 2050 3900×1980×1900
SYC-12/12 12 12 CUMMINS 6BTA5.9-C180,132kW 2380 4080×1980×2350
SYC-12/13 12 13 CUMMINS 6BTA5.9-C180,132kW 2750 4080×1980×2350
SYC-13/13 13 13 CUMMINS 6BTA5.9-C180,132kW 2750 3450×1520×2220
SYC-17/7 17 7 CUMMINS 6BTA5.9-C180,132kW 3350 3380×1640×2350
SYC-15/13 15 13 YUCHAI YC6A240-20,177kW 3350 3380×1650×2500
SYC-16/13 16 13 CUMMINS 6CTA8.3-C215,158kW 3350 3980×1800×2450
SYC-13/17 13 17 CUMMINS 6CTA8.3-C215,158kW 3400 3780×1980×2350
SYC-17/14.5 17 14.5 CUMMINS 6CTA8.3-C260,194kW 3400 3980×1800×2450
SYC-19/14.5 19 14.5 CUMMINS 6CTA8.3-C260,194kW 3400 3980×1800×2450
SYC-18/17 18 17 CUMMINS 6CTA8.3-C260,194kW 3400 3980×1800×2450
SYC-20/13 20 13 CUMMINS 6CTA8.3-C260,194kW 3400 3980×1800×2450
SYC-22/8 22 8 CUMMINS 6CTA8.3-C260,194kW 4000 4580×1950×2600
SYC-26/8 26 8 CUMMINS 6CTA8.3-C260,194kW 4000 4580×1950×2600
SYC-22/14 22 14 CUMMINS 6CTA8.9-C325, 239kW 4500 4580×1950×2600
SYC-27/10 27 10 CUMMINS 6CTA8.9-C325, 239kW 5000 4600×1950×2850
SYC-30/10 30 10 CUMMINS 6CTA8.9-C325, 240kW 5000 4600×1950×2850
Two Stages Compression Portable Diesel Screw Air Compressor
SYC-19.5/19 19.5 19 CUMMINS 6CTA8.3-C260,194KW 3700 3650*1800*2500
SYC-22/20 22 20 CUMMINS 6LTA8.9-C360,265KW 4500 4600*1950*2850
SYC-26/20 26 20 CUMMINS 6LTA8.9-C360,265KW 4850 4600*1950*2850
SYC-27/22 27 22 CUMMINS NTA855-P400 5000 4600*1950*2850
SYC-26/25 26 25 CUMMINS QSZ13-C500 5100 4700*2100*2500
SYC-21/35 21 35 CUMMINS QSZ13-C500 5100 4700*2100*2500
SYC-33/25 33 25 CUMMINS QSZ13-C550 5200 4700*2100*2500
SYC-26/35 26 35 CUMMINS QSZ13-C550 5200 4700*2100*2500

 

Lubrication Style: Lubricated
Cooling System: Air Cooling
Power Source: Diesel Engine
Cylinder Position: Vertical
Structure Type: Closed Type
Installation Type: Movable Type
Customization:
Available

|

air compressor

What are the advantages of using rotary vane compressors?

Rotary vane compressors offer several advantages that make them a popular choice for various applications. These compressors are widely used in industries where a reliable and efficient source of compressed air is required. Here are the advantages of using rotary vane compressors:

1. Compact and Lightweight:

Rotary vane compressors are typically compact and lightweight compared to other types of compressors. Their compact design makes them suitable for installations where space is limited, such as in small workshops or mobile applications. The lightweight nature of these compressors allows for easy transportation and maneuverability.

2. High Efficiency:

Rotary vane compressors are known for their high efficiency. The design of the vanes and the compression chamber allows for smooth and continuous compression, resulting in minimal energy losses. This efficiency translates into lower energy consumption and reduced operating costs over time.

3. Quiet Operation:

Rotary vane compressors operate with relatively low noise levels. The design of the compressor, including the use of vibration damping materials and sound insulation, helps to minimize noise and vibrations during operation. This makes rotary vane compressors suitable for applications where noise reduction is important, such as in indoor environments or noise-sensitive areas.

4. Oil Lubrication:

Many rotary vane compressors utilize oil lubrication, which provides several benefits. The oil lubrication helps to reduce wear and friction between the moving parts, resulting in extended compressor life and improved reliability. It also contributes to better sealing and improved efficiency by minimizing internal leakage.

5. Versatile Applications:

Rotary vane compressors are versatile and can be used in a wide range of applications. They are suitable for both industrial and commercial applications, including automotive workshops, small manufacturing facilities, dental offices, laboratories, and more. They can handle various compressed air requirements, from light-duty tasks to more demanding applications.

6. Easy Maintenance:

Maintenance of rotary vane compressors is relatively straightforward. Routine maintenance tasks typically include oil changes, filter replacements, and periodic inspection of vanes and seals. The simplicity of the design and the availability of replacement parts make maintenance and repairs easier and more cost-effective.

These advantages make rotary vane compressors an attractive choice for many applications, providing reliable and efficient compressed air solutions.

air compressor

Are there differences between single-stage and two-stage air compressors?

Yes, there are differences between single-stage and two-stage air compressors. Here’s an in-depth explanation of their distinctions:

Compression Stages:

The primary difference between single-stage and two-stage air compressors lies in the number of compression stages they have. A single-stage compressor has only one compression stage, while a two-stage compressor has two sequential compression stages.

Compression Process:

In a single-stage compressor, the entire compression process occurs in a single cylinder. The air is drawn into the cylinder, compressed in a single stroke, and then discharged. On the other hand, a two-stage compressor utilizes two cylinders or chambers. In the first stage, air is compressed to an intermediate pressure in the first cylinder. Then, the partially compressed air is sent to the second cylinder where it undergoes further compression to reach the desired final pressure.

Pressure Output:

The number of compression stages directly affects the pressure output of the air compressor. Single-stage compressors typically provide lower maximum pressure levels compared to two-stage compressors. Single-stage compressors are suitable for applications that require moderate to low air pressure, while two-stage compressors are capable of delivering higher pressures, making them suitable for demanding applications that require greater air pressure.

Efficiency:

Two-stage compressors generally offer higher efficiency compared to single-stage compressors. The two-stage compression process allows for better heat dissipation between stages, reducing the chances of overheating and improving overall efficiency. Additionally, the two-stage design allows the compressor to achieve higher compression ratios while minimizing the work done by each stage, resulting in improved energy efficiency.

Intercooling:

Intercooling is a feature specific to two-stage compressors. Intercoolers are heat exchangers placed between the first and second compression stages. They cool down the partially compressed air before it enters the second stage, reducing the temperature and improving compression efficiency. The intercooling process helps to minimize heat buildup and reduces the potential for moisture condensation within the compressor system.

Applications:

The choice between a single-stage and two-stage compressor depends on the intended application. Single-stage compressors are commonly used for light-duty applications such as powering pneumatic tools, small-scale workshops, and DIY projects. Two-stage compressors are more suitable for heavy-duty applications that require higher pressures, such as industrial manufacturing, automotive service, and large-scale construction.

It is important to consider the specific requirements of the application, including required pressure levels, duty cycle, and anticipated air demand, when selecting between a single-stage and two-stage air compressor.

In summary, the main differences between single-stage and two-stage air compressors lie in the number of compression stages, pressure output, efficiency, intercooling capability, and application suitability.

air compressor

Can air compressors be used for automotive applications?

Yes, air compressors can be used for various automotive applications and are commonly found in automotive repair shops, garages, and even in some vehicles. Here are some automotive applications where air compressors are frequently utilized:

1. Tire Inflation: Air compressors are commonly used to inflate tires in automotive applications. They provide a convenient and efficient way to inflate tires to the recommended pressure, ensuring optimal tire performance, fuel efficiency, and safety.

2. Air Tools: Air compressors power a wide range of pneumatic tools used in automotive repair and maintenance. These tools include impact wrenches, ratchet wrenches, air hammers, pneumatic drills, and sanders. Air-powered tools are favored for their high torque and power-to-weight ratio, making them suitable for heavy-duty automotive tasks.

3. Spray Painting: Air compressors are commonly used in automotive painting applications. They power airbrushes and spray guns that are used to apply paint, primer, and clear coats. Air compressors provide the necessary air pressure to atomize the paint and deliver a smooth and even finish.

4. Brake System Maintenance: Air compressors play a crucial role in maintaining and diagnosing automotive brake systems. They are used to pressurize the brake lines, allowing for proper bleeding of the system and detection of leaks or faults.

5. Suspension Systems: Some automotive suspension systems, such as air suspensions, rely on air compressors to maintain the desired air pressure in the suspension components. The compressor inflates or deflates the suspension as needed to provide a comfortable ride and optimal handling.

6. Cleaning and Dusting: Air compressors are used for cleaning automotive parts, blowing away dust and debris, and drying surfaces. They provide a high-pressure stream of air that effectively cleans hard-to-reach areas.

7. Air Conditioning Systems: Air compressors are a key component in automotive air conditioning systems. They compress and circulate refrigerant, allowing the system to cool and dehumidify the air inside the vehicle.

When using air compressors for automotive applications, it’s important to consider the specific requirements of the task at hand. Ensure that the air compressor has the necessary pressure and capacity to meet the demands of the application. Additionally, use appropriate air hoses, fittings, and tools that are compatible with the compressor’s output.

Overall, air compressors are versatile and valuable tools in the automotive industry, providing efficient power sources for a wide range of applications, from tire inflation to powering pneumatic tools and supporting various automotive systems.

China supplier 750cfm 510psi Portable Diesel Power Rotary Screw Air Compressor for Heavy Industry   air compressor repair near meChina supplier 750cfm 510psi Portable Diesel Power Rotary Screw Air Compressor for Heavy Industry   air compressor repair near me
editor by CX 2023-11-07

China best High Efficiency Air Compressor Oil-Free Centrifugal for Hydrogen Fuel Cell Bop 10kw 30kw 60kw 90kw 100kw 120kw 150kw Fuel Cell mini air compressor

Product Description

 

Product Description

Pressurized oil-free centrifugal air compressor

The fuel cell air compressor is mainly used in the fuel cell air circuit to compress the external gas to obtain a suitable inlet pressure and flow rate for the operation of the stack.Oil free air compressors have the following advantages:
1. The oil-free air compressor adopts small cylinders, with a smaller volume and more compact structure;
2. The oil-free air compressor has excellent balance performance and does not require too many parts;
3. Low vibration, but high operating efficiency;
4. The oil-free silent design is used in the design of oil-free air compressors, which will not produce excessive noise during long-term operation;
5. Unmanned duty can be achieved during the work process;
6. The design of oil-free air compressors intentionally avoids excessive components, so they do not require a lot of manpower and material resources for maintenance and upkeep.

 

Product Parameters

Pressurized oil-free centrifugal air compressor

model XT-FCC160 XT-FCC300 XT-FCC300S XT-FCC300P
Rated pressure Ratio(PR) 2.5 2.5 2.5 2.8
Flow (g/s) 58 108 108 97
Air compressor rated power( KW) 9 <15 <15 15.94
Matching system power (KW) 30-50 50-100 50-100 50-100
Intakeair temperature ºC -30-45ºC -30-45ºC -30-45ºC -30-45ºC
voltage ( VDC) 450-750 450-750 450-750 450-750
Start/stop Life (times) >100000 >100000 >100000 >100000

Company Profile

Sinopower was established in 2011. We supply various products in the hydrogen energy industry chain, including but not limited to hydrogen production, hydrogen storage, hydrogen supply, electric maintenance and BOP parts, fuel cell system assemblies, fuel cell vehicles, etc.

We have an experienced professional technology research and development team, which can provide professional services from product selection and matching, system design, product customization and development and technical support. We work with CHINAMFG universities and scientific research institutions at home and abroad, such as the University of Science and Technology of China, the University of Auckland, HangZhou University, HangZhou University of Technology, Sun Yat-sen University, etc, The first hydrogen fuel cell forklift has been developed for the domestic leading forklift enterprise CHINAMFG Forklift.

At the same time, our stack, fuel cell system, hydrogen bicycle/scooter, hydrogen UAV and hydrogen production equipment are exported to dozens of countries and regions such as the United States, the Netherlands, Italy, Germany, South Korea, India and Malaysia.

 

 

Packaging & Shipping

The packaging of the items is strong and intact, avoiding breakage, leakage, and loss during the shipping process; avoiding damage to the internal items caused by external climate changes.Customize packaging according to the actual product to ensure that the product arrives at the customer’s designated place without damage.

 

 

Our Advantages

 

Using Scenarios
The product is mainly used as a small power generation device, can be used for sea, land wind and wind direction observation power supply, mountain area, sea meteorological observation power supply, engineering guide electric and optical display board power supply, river water quality survey power supply, emergency backup power supply of parking lot, unmanned monitoring power supply, parking lot collection equipment backup power supply, RV power supply and so on.

 

 

FAQ

 

1. who are we?
We are based in ZheJiang , China, start from 2011,sell to Southeast Asia,North America,Eastern Europe,South Asia.

2.Can you customize the rated power or voltage?
Yes, customizing products is acceptable.

3.Can your company provide whole system(fuel cell, Hydrogen production, hydrogen storage, hydrogen supply system)?
Yes, we can provide necessary accessories accordingly.

4. why should you buy from us not from other suppliers?
We have an experienced professional technical research and development team. Control system matching ability/R&D and quality control ability. Price advantage brought by supply chain integration capabilities.

 

5.What is your terms of payment?
We accept payment by Paypal, Alibaba, T/T, L/C,etc.. for bulk order, we charge 50% before production and remaining balance payment before shipment.

 

After-sales Service: Available
Warranty: 1year
Installation Type: Stationary Type
Samples:
US$ 1000/Piece
1 Piece(Min.Order)

|

Order Sample

Customization:
Available

|

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

air compressor

Can air compressors be used for cleaning and blowing dust?

Yes, air compressors can be effectively used for cleaning and blowing dust in various applications. Here’s how air compressors are utilized for these purposes:

1. Cleaning Machinery and Equipment:

Air compressors are commonly used for cleaning machinery and equipment in industries such as manufacturing, automotive, and construction. Compressed air is directed through a nozzle or blowgun attachment to blow away dust, debris, and other contaminants from surfaces, crevices, and hard-to-reach areas. The high-pressure air effectively dislodges and removes accumulated dust, helping to maintain equipment performance and cleanliness.

2. Dusting Surfaces:

Air compressors are also employed for dusting surfaces in various settings, including homes, offices, and workshops. The compressed air can be used to blow dust off furniture, shelves, electronic equipment, and other objects. It provides a quick and efficient method of dusting, especially for intricate or delicate items where traditional dusting methods may be challenging.

3. Cleaning HVAC Systems:

Air compressors are utilized for cleaning HVAC (Heating, Ventilation, and Air Conditioning) systems. The compressed air can be used to blow dust, dirt, and debris from air ducts, vents, and cooling coils. This helps improve the efficiency and air quality of HVAC systems, preventing the buildup of contaminants that can affect indoor air quality.

4. Blowing Dust in Workshops:

In workshops and garages, air compressors are often used to blow dust and debris from workbenches, power tools, and work areas. Compressed air is directed to blow away loose particles and maintain a clean and safe work environment. This is particularly useful in woodworking, metalworking, and other trades where dust and debris can accumulate during the manufacturing or fabrication processes.

5. Cleaning Electronics and Computer Equipment:

Air compressors are employed for cleaning electronics and computer equipment. The compressed air is used to blow dust and debris from keyboards, computer cases, circuit boards, and other electronic components. It helps in preventing overheating and maintaining the proper functioning of sensitive electronic devices.

6. Industrial Cleaning Applications:

Air compressors find extensive use in industrial cleaning applications. They are employed in industrial settings, such as factories and warehouses, for cleaning large surfaces, production lines, and equipment. Compressed air is directed through specialized cleaning attachments or air-operated cleaning systems to remove dust, dirt, and contaminants efficiently.

When using air compressors for cleaning and blowing dust, it is important to follow safety precautions and guidelines. The high-pressure air can cause injury if directed towards the body or sensitive equipment. It is advisable to wear appropriate personal protective equipment, such as safety glasses and gloves, and ensure that the air pressure is regulated to prevent excessive force.

Overall, air compressors provide a versatile and effective solution for cleaning and blowing dust in various applications, offering a convenient alternative to traditional cleaning methods.

air compressor

How do you maintain proper air quality in compressed air systems?

Maintaining proper air quality in compressed air systems is essential to ensure the reliability and performance of pneumatic equipment and the safety of downstream processes. Here are some key steps to maintain air quality:

1. Air Filtration:

Install appropriate air filters in the compressed air system to remove contaminants such as dust, dirt, oil, and water. Filters are typically placed at various points in the system, including the compressor intake, aftercoolers, and before point-of-use applications. Regularly inspect and replace filters to ensure their effectiveness.

2. Moisture Control:

Excessive moisture in compressed air can cause corrosion, equipment malfunction, and compromised product quality. Use moisture separators or dryers to remove moisture from the compressed air. Refrigerated dryers, desiccant dryers, or membrane dryers are commonly employed to achieve the desired level of dryness.

3. Oil Removal:

If the compressed air system utilizes oil-lubricated compressors, it is essential to incorporate proper oil removal mechanisms. This can include coalescing filters or adsorption filters to remove oil aerosols and vapors from the air. Oil-free compressors eliminate the need for oil removal.

4. Regular Maintenance:

Perform routine maintenance on the compressed air system, including inspections, cleaning, and servicing of equipment. This helps identify and address any potential issues that may affect air quality, such as leaks, clogged filters, or malfunctioning dryers.

5. Air Receiver Tank Maintenance:

Regularly drain and clean the air receiver tank to remove accumulated contaminants, including water and debris. Proper maintenance of the tank helps prevent contamination from being introduced into the compressed air system.

6. Air Quality Testing:

Periodically test the quality of the compressed air using appropriate instruments and methods. This can include measuring particle concentration, oil content, dew point, and microbial contamination. Air quality testing provides valuable information about the effectiveness of the filtration and drying processes and helps ensure compliance with industry standards.

7. Education and Training:

Educate personnel working with compressed air systems about the importance of air quality and the proper procedures for maintaining it. Provide training on the use and maintenance of filtration and drying equipment, as well as awareness of potential contaminants and their impact on downstream processes.

8. Documentation and Record-Keeping:

Maintain accurate records of maintenance activities, including filter replacements, drying system performance, and air quality test results. Documentation helps track the system’s performance over time and provides a reference for troubleshooting or compliance purposes.

By implementing these practices, compressed air systems can maintain proper air quality, minimize equipment damage, and ensure the integrity of processes that rely on compressed air.

air compressor

How does an air compressor work?

An air compressor works by using mechanical energy to compress and pressurize air, which is then stored and used for various applications. Here’s a detailed explanation of how an air compressor operates:

1. Air Intake: The air compressor draws in ambient air through an intake valve or filter. The air may pass through a series of filters to remove contaminants such as dust, dirt, and moisture, ensuring the compressed air is clean and suitable for its intended use.

2. Compression: The intake air enters a compression chamber, typically consisting of one or more pistons or a rotating screw mechanism. As the piston moves or the screw rotates, the volume of the compression chamber decreases, causing the air to be compressed. This compression process increases the pressure and reduces the volume of the air.

3. Pressure Build-Up: The compressed air is discharged into a storage tank or receiver where it is held at a high pressure. The tank allows the compressed air to be stored for later use and helps to maintain a consistent supply of compressed air, even during periods of high demand.

4. Pressure Regulation: Air compressors often have a pressure regulator that controls the output pressure of the compressed air. This allows the user to adjust the pressure according to the requirements of the specific application. The pressure regulator ensures that the compressed air is delivered at the desired pressure level.

5. Release and Use: When compressed air is needed, it is released from the storage tank or receiver through an outlet valve or connection. The compressed air can then be directed to the desired application, such as pneumatic tools, air-operated machinery, or other pneumatic systems.

6. Continued Operation: The air compressor continues to operate as long as there is a demand for compressed air. When the pressure in the storage tank drops below a certain level, the compressor automatically starts again to replenish the compressed air supply.

Additionally, air compressors may include various components such as pressure gauges, safety valves, lubrication systems, and cooling mechanisms to ensure efficient and reliable operation.

In summary, an air compressor works by drawing in air, compressing it to increase its pressure, storing the compressed air, regulating the output pressure, and releasing it for use in various applications. This process allows for the generation of a continuous supply of compressed air for a wide range of industrial, commercial, and personal uses.

China best High Efficiency Air Compressor Oil-Free Centrifugal for Hydrogen Fuel Cell Bop 10kw 30kw 60kw 90kw 100kw 120kw 150kw Fuel Cell   mini air compressorChina best High Efficiency Air Compressor Oil-Free Centrifugal for Hydrogen Fuel Cell Bop 10kw 30kw 60kw 90kw 100kw 120kw 150kw Fuel Cell   mini air compressor
editor by CX 2023-11-07

China best 11kw 15 HP Low Noise Portable Oil Injected 16bar Single Screw Air Compressor with 500L Air Tank for Fiber Laser Cutting with high quality

Product Description

Product Description

Two stage air end
Feature:Two-stage compressor air-end
Advantage:Low compression ratio, Low temperature rising, Low air leakage
Benefit:15% energy-saving

High-efficiency Motor
Feature:IE4 permanent magnet motor/IE4 High-efficiency motor
Advantage:Motor efficiency 97%
Benefit:5% energy-saving

Intelligent control
Feature:VFD system
Advantage:Constant pressure output to remove pressure fluctuation and off-load, Constant temperature output at 9-~85°C, Low starting current to protect components
Benefit:15% energy-saving

Smart display screen
Feature:Intelligent control system
Advantage:10 inch monitor to show all the date
Benefit:Simple operation and touble free

Cooling fan
Feature:Large cooler system
Advantage:Axial flow Fan used for good cooling effect
Benefit:Allow ambient temperature at 52°C

Systematic Design of Oil separator
Feature:Large oil system
Advantage:Reduce internal pressure loss avoid oil, Leakage for safety
Benefit:3% energy-saving

Filter
Feature:Double filtering system
Advantage:Remove impurity from air and cleanness
Benefit:Longer life air -end and lubrication oil

Air inlet valve
Feature:High vacuum degree:700mmHg
Advantage:Large suction area, Low load energy consumption in unloaded operation, 
Fast check: prevent unloading and shutdown oil injection
Benefit:Cast aluminum to avoid rust and temperature change

Technical Parameter

1.power frequency

ODEL Air flow Capacity (m³/min)

Power 

(kW)

Noise 

(DB)

Outlet 

Diameter

Dimension ( mm)

Weight 

(Kg)

0.6Mpa 0.7Mpa 0.8Mpa 1.0Mpa 1.3Mpa
DD-75 15.80  14.70  13.00  9.50  8.60  55 70 DN50 2300x1300x1830 1534
DD-100 18.80  17.40  15.50  12.80  10.00  75 72 DN50 2300x1300x1830 1700
DD-125 21.30  20.70  19.50  16.50  13.00  90 72 DN65 2550x1630x1850 2080
DD-150 26.50  26.30  25.00  20.00  18.80  110 72 DN65 2550x1630x1850 2120
DD-175 34.00  32.60  30.00  24.00  20.00  132 78 DN80 3000x1828x2310 4850
DD-220 41.00  38.00  37.00  29.60  24.50  160 78 DN80 3000x1828x2310 5000
DD-250 44.00  41.00  40.00  34.00  31.00  185 78 DN100 3460x1940x2230 5900
DD-275 48.00  44.00  45.00  40.00  33.00  200 78 DN100 3460x1940x2230 6200
DD-275 55.00  51.00  50.00  43.00  38.00  220 80 DN125 3860x2130x2380 8500
DD-350 60.00  57.00  56.00  47.00  43.00  250 80 DN125 3860x2130x2380 8650 

2.Permanent magnet

 MODEL Air flow Capacity (m³/min) Power  (kW)

Noise 

(DB)

Outlet 

Diameter

Dimension (mm) Weight (Kg)
0.7Mpa 0.8Mpa 1.0Mpa 1.3Mpa
DDM-60 10.5 10.3  7.3  6.1 45 70 G2 1834*1290*1810 1353
DDM-75 13.6 12.3  10.2 7.0  55 70 DN50 2300*1300*1830 1534
DDM-100 16.0 15.5  12.8  10.2 75 72 DN50 2300*1300*1830 1700
DDM-125 20.7 19.5  16.2  13.2 90 72 DN65 2550*1630*1850 2080
DDM-150 24.8 24.0  20.2  15.2 110 72 DN65 2550*1630*1850 2120
DDM-175 29.0 28.0 23.2 18.7 132 78 DN80 2800*1828*2150 4850
DDM-220 34.0 33.5 28.0 23.3 160 78 DN80 2800*1828*2150 5000
DDM-250 39.0 38.0 33.5 27.7 185 78 DN100 4100*1960*2000 5900
DDM-275 43.0 42.5 38.3 33.3 200 78 DN100 4100*1960*2000 6200
DDM-300 51.5 47.0 42.4 38.3 220 80 DN125 4260*2155*2170 8500
DDM-350 54.0 51.0 45.8 41.4 250 80 DN125 4260*2155*2170 8650

Certificate

Project case

Customer feedback

About us

Dehaha Compressor was founded in 1996 with over 150 skilled employees and more than 25 R&D engineers’ teams.We focus on the research & develop, manufacture and energy-saving solutions of screw air compressor to create value for customers and society.

Dehaha opened to the world since 2015, and now we have a foreign trade department with more than dozens people, serving customers around the world 24 hours. We have sales representatives who can speak English, Spanish, Portuguese, French,and Russian which makes it easier for our clients from all over the world to interact and negotiate with us.now our valued customers are over 130 countries. Germany Standard and 13 years exporting experience help us won more than 50 loyal overseas agents.

Dehaha continuously innovates product development and management to meet customers’ demand. The powerful enterprise culture and continuous innovation make CHINAMFG improved rapidly to reach the business principle “Energy Saving First, Mutual Value Shared”. The production line of CHINAMFG is consist of screw air compressor from 5.5KW to 550KW, oil free air compressor, portable air compressor, permanent magnet variable frequency air compressor, high pressure air compressor and compressed air purification equipment, etc.

Dehaha mission is to be a world-renowned high-end brand, with sustainable development, constantly improving its own value and sharing it with our customers and staff. Committed to offer our customers a silent and energy-saving manufactured products.

Our service

1.24/7 after sales service support in different languages.
2.Follow up the feedback of products in 2 months interval by email or call.
3.Guidance of installation and commissioning on site can be provided by factory-trained technicians or local Authorized Service Center.
4.Technical training for customers in DEHAHA air compressor factory or working site.
5.Plenty of original spare parts with proven quality are all available from our central stocks in ZheJiang and all distributors’depots. 
6.All kinds of technical documents in different languages.

FAQ

1.Why customer choose us? 
DHH CHINAMFG ZheJiang CO.,LTD.with 23 years old history,we are specialized in Rotary Screw Air Compressor.Germany Standard and 13 years exporting experience help us won more than 30 loyal foreign agents.We warmly welcome your small trial order for quality or market test.

2.Are you a manufacturer or trading company?
We are professional manufacturer with big modern factory in HangZhou,China,with professional design team.Both OEM & ODM service can be accepted.

3.Where is your factory located? How can I visit there?
Our factory is located in HangZhou City, ZheJiang Province, China. We can pick up you from ZheJiang , it’s about 1 hour from ZheJiang Xihu (West Lake) Dis. Airport to our factory. Warmly welcome to visit us!

4.What’s your delivery time?
380V 50HZ we can delivery the goods within 14 days. Other electricity or other color we will delivery within 22 days,if urgently order,pls contact our sales in advance.

5.How long is your air compressor warranty?
One year for the whole machine and 2 years for screw air end, except consumable spare parts and we can provide some spare parts of the machines

6.How does your factory do regarding quality control?
Quality is everything. we always attach great importance to quality controlling from the very beginning to the very end. Our factory has gained ISO9001:2015 authentication and CE certificate.

7.How long could your air compressor be used?
Generally, more than 10 years.

8. What’s payment term?
T/T,L/C,D/P,Western Union,Paypal,Credit Card,and etc.Also we could accept USD, RMB, Euro and other currency.

9.How about your customer service?
24 hours on-line service available.48 hours problem solved promise.

10.How about your after-sales service?
(1) Provide customers with installation and commissioning online instructions.
(2) Well-trained engineers available to overseas service.
(3) CHINAMFG agents and after service available. 

Lubrication Style: Lubricated
Cooling System: Air Cooling
Power Source: AC Power
Cylinder Position: Vertical
Structure Type: Closed Type
Installation Type: Stationary Type
Customization:
Available

|

air compressor

What is the impact of humidity on compressed air quality?

Humidity can have a significant impact on the quality of compressed air. Compressed air systems often draw in ambient air, which contains moisture in the form of water vapor. When this air is compressed, the moisture becomes concentrated, leading to potential issues in the compressed air. Here’s an overview of the impact of humidity on compressed air quality:

1. Corrosion:

High humidity in compressed air can contribute to corrosion within the compressed air system. The moisture in the air can react with metal surfaces, leading to rust and corrosion in pipes, tanks, valves, and other components. Corrosion not only weakens the structural integrity of the system but also introduces contaminants into the compressed air, compromising its quality and potentially damaging downstream equipment.

2. Contaminant Carryover:

Humidity in compressed air can cause carryover of contaminants. Water droplets formed due to condensation can carry particulates, oil, and other impurities present in the air. These contaminants can then be transported along with the compressed air, leading to fouling of filters, clogging of pipelines, and potential damage to pneumatic tools, machinery, and processes.

3. Decreased Efficiency of Pneumatic Systems:

Excessive moisture in compressed air can reduce the efficiency of pneumatic systems. Water droplets can obstruct or block the flow of air, leading to decreased performance of pneumatic tools and equipment. Moisture can also cause problems in control valves, actuators, and other pneumatic devices, affecting their responsiveness and accuracy.

4. Product Contamination:

In industries where compressed air comes into direct contact with products or processes, high humidity can result in product contamination. Moisture in compressed air can mix with sensitive products, leading to quality issues, spoilage, or even health hazards in industries such as food and beverage, pharmaceuticals, and electronics manufacturing.

5. Increased Maintenance Requirements:

Humidity in compressed air can increase the maintenance requirements of a compressed air system. Moisture can accumulate in filters, separators, and other air treatment components, necessitating frequent replacement or cleaning. Excessive moisture can also lead to the growth of bacteria, fungus, and mold within the system, requiring additional cleaning and maintenance efforts.

6. Adverse Effects on Instrumentation:

Humidity can adversely affect instrumentation and control systems that rely on compressed air. Moisture can disrupt the accuracy and reliability of pressure sensors, flow meters, and other pneumatic instruments, leading to incorrect measurements and control signals.

To mitigate the impact of humidity on compressed air quality, various air treatment equipment is employed, including air dryers, moisture separators, and filters. These devices help remove moisture from the compressed air, ensuring that the air supplied is dry and of high quality for the intended applications.

air compressor

What are the environmental considerations when using air compressors?

When using air compressors, there are several environmental considerations to keep in mind. Here’s an in-depth look at some of the key factors:

Energy Efficiency:

Energy efficiency is a crucial environmental consideration when using air compressors. Compressing air requires a significant amount of energy, and inefficient compressors can consume excessive power, leading to higher energy consumption and increased greenhouse gas emissions. It is important to choose energy-efficient air compressors that incorporate features such as Variable Speed Drive (VSD) technology and efficient motor design, as they can help minimize energy waste and reduce the carbon footprint.

Air Leakage:

Air leakage is a common issue in compressed air systems and can contribute to energy waste and environmental impact. Leaks in the system result in the continuous release of compressed air, requiring the compressor to work harder and consume more energy to maintain the desired pressure. Regular inspection and maintenance of the compressed air system to detect and repair leaks can help reduce air loss and improve overall energy efficiency.

Noise Pollution:

Air compressors can generate significant noise levels during operation, which can contribute to noise pollution. Prolonged exposure to high noise levels can have detrimental effects on human health and well-being and can also impact the surrounding environment and wildlife. It is important to consider noise reduction measures such as sound insulation, proper equipment placement, and using quieter compressor models to mitigate the impact of noise pollution.

Emissions:

While air compressors do not directly emit pollutants, the electricity or fuel used to power them can have an environmental impact. If the electricity is generated from fossil fuels, the associated emissions from power plants contribute to air pollution and greenhouse gas emissions. Choosing energy sources with lower emissions, such as renewable energy, can help reduce the environmental impact of operating air compressors.

Proper Waste Management:

Proper waste management is essential when using air compressors. This includes the appropriate disposal of compressor lubricants, filters, and other maintenance-related materials. It is important to follow local regulations and guidelines for waste disposal to prevent contamination of soil, water, or air and minimize the environmental impact.

Sustainable Practices:

Adopting sustainable practices can further reduce the environmental impact of using air compressors. This can include implementing preventive maintenance programs to optimize performance, reducing idle time, and promoting responsible use of compressed air by avoiding overpressurization and optimizing system design.

By considering these environmental factors and taking appropriate measures, it is possible to minimize the environmental impact associated with the use of air compressors. Choosing energy-efficient models, addressing air leaks, managing waste properly, and adopting sustainable practices can contribute to a more environmentally friendly operation.

air compressor

In which industries are air compressors widely used?

Air compressors find extensive usage across various industries due to their versatility and ability to generate compressed air. Here are some industries where air compressors are widely employed:

1. Manufacturing: Air compressors are essential in manufacturing processes for powering pneumatic tools and equipment. They are used for tasks such as operating assembly lines, powering robotic machinery, running paint sprayers, and driving pneumatic actuators.

2. Construction: Air compressors play a crucial role in the construction industry. They power pneumatic tools like jackhammers, nail guns, impact wrenches, and concrete breakers. Compressed air is also used for concrete spraying, sandblasting, and operating air-powered lifts and hoists.

3. Automotive: Air compressors are widely used in automotive manufacturing and repair. They power air tools used in auto body shops, tire inflation equipment, pneumatic lifts, and air-operated brake systems. Compressed air is also utilized in vehicle painting and drying processes.

4. Oil and Gas: The oil and gas industry extensively relies on air compressors for various applications. They are used for pneumatic drilling, powering pneumatic tools in refineries and petrochemical plants, operating pneumatic valves and actuators, and providing instrument air for control systems.

5. Food and Beverage: Air compressors are employed in the food and beverage industry for tasks such as packaging, bottling, and sealing. They power pneumatic conveying systems, control air pressure in food processing equipment, and provide clean compressed air for food handling and storage.

6. Pharmaceutical and Healthcare: Air compressors find application in pharmaceutical manufacturing and healthcare facilities. They are used for operating medical equipment, such as ventilators and dental tools. Compressed air is also utilized in pharmaceutical processes, including tablet coating, fluid bed drying, and aseptic packaging.

7. Aerospace: The aerospace industry relies on air compressors for various applications, including aircraft maintenance and assembly. They power pneumatic tools for aircraft repair, provide compressed air for cleaning and pressurizing systems, and support ground operations, such as tire inflation and aircraft de-icing.

8. Mining: Air compressors are extensively used in the mining industry. They power pneumatic tools for drilling, rock blasting, and excavation. Compressed air is also utilized for ventilation, conveying materials, and operating underground equipment.

9. Energy and Utilities: Air compressors play a vital role in the energy and utilities sector. They are used in power generation plants for pneumatic control systems, instrument air, and operating pneumatic valves. Compressed air is also employed for cleaning and maintenance purposes.

These are just a few examples of the industries where air compressors are widely utilized. The versatility and reliability of air compressors make them indispensable in numerous applications across diverse sectors.

China best 11kw 15 HP Low Noise Portable Oil Injected 16bar Single Screw Air Compressor with 500L Air Tank for Fiber Laser Cutting   with high qualityChina best 11kw 15 HP Low Noise Portable Oil Injected 16bar Single Screw Air Compressor with 500L Air Tank for Fiber Laser Cutting   with high quality
editor by CX 2023-11-06

China Custom 180HP Variable Frequency Two Stage Screw Air Compressor 132kw for Textile Industry Low Price China-Made in Stock Machine small air compressor

Product Description

Product Description

Product Parameters

Model Motor Power Maximum Working Pressure Free Air Delivery Air Outlet Pipe Diameter Weight Dimensions(L*W*H)
kW hp bar(g) psig m³/min cfm kg mm
BG50APMII 37 50 4 58 10.3  364 G2″ 1600 2100*1300*1650
5 73 9.5  335
BG60APMII 45 60 4 58 12.2  431 G2″ 1650 2100*1300*1650
5 73 11.5  406
BG75APMII 55 75 4 58 15.5  547 G2″ 1700 2100*1300*1650
5 73 14.5  512
BG100APMII 75 100 4 58 19.5  689 DN80 2700 2500*1650*1900
5 73 19.0  671
BG125APMII 90 125 4 58 24.5  865 DN80 2800 2500*1650*1900
5 73 23.0  812
BG150APMII 110 150 4 58 28.0  989 DN80 2900 2500*1650*1900
5 73 27.5  971
BG180APMII 132 180 4 58 36.0  1271 DN100 3100 3000*1900*1950
5 73 34.0  1201
BG220APMII 160 220 4 58 46.0  1624 DN100 4400 3000*1900*1950
5 73 42.0  1483
BG250APMII 185 250 4 58 52.0  1836 DN125 5500 3600*2200*2200
5 73 45.0  1589
BG270APMII 200 270 4 58 57.0  2013 DN125 6000 3600*2200*2200
5 73 51.5  1819
BG300APMII 220 300 4 58 62.0  2190 DN150 6800 4000*2300*2300
5 73 55.0  1942
BG340APMII 250 340 4 58 65.0  2295 DN150 7500 4000*2300*2300
5 73 61.0  2154

Wallboge is a high-tech enterprise and is considered 1 of the leading manufacturers of air compressor products in China. Our goal is to provide exceptional customer service coupled with quality products and energy saving solutions.

Wallboge’ s primary businesses focus in following key areas:

Integrated screw air compressor for laser cutting
Permanent magnet variable frequency screw air compressor
Two-stage compression permanent magnet variable frequency screw air compressor
Low pressure two-stage compression permanent magnet variable frequency screw air compressor
Low pressure permanent magnet variable frequency screw air compressor
Water-lubricated oil-free screw air compressor
Fixed speed screw air compressor
Oil-free screw blower
Screw vacuum pump

At Wallboge, we earn our customers’ trust and satisfaction by manufacturing the superior quality compressed air products for all industries. All of our products are designed for reliable performance, easy maintenance, and maximum energy efficiency. CHINAMFG has been exporting to more than 150 countries across the globe. 

Wallboge continuously innovates product development and management to meet customers’ demand. The powerful enterprise culture and continuous innovation make CHINAMFG improved rapidly. Wallboge’ s vision is to be a world-renowned high-end energy-saving machinery brand, with sustainable development, constantly improving its own value and sharing it with our customers and staff, committed to continuously satisfying the needs of global companies by providing a full range of industrial air compression solutions.

Certifications

Exhibitions

 

After Sales Service

1. 24/7 after sales service in different languages.
2. Online instruction for installation and commissioning.
3. On-site instruction for installation and commissioning provided by well-trained engineers or local authorized service center.
4. CHINAMFG agents and after sales service available.
 

Our Advantages

1. Proven product quality.
2. Factory direct prices.
3. On-time delivery.
4. Prompt technical support in different languages before sales, in sales and after sales.
5. Small orders accepted to check quality first.
6. OEM & ODM service available.

 

FAQ

Q1: Are you a factory or a trading company? 
A1: We are a factory. Please check our Company Profile.

Q2: What is the exact address of your factory? 
A2: No. 588, East Tonggang Road, Shaxi Town, HangZhou City, ZheJiang Province, China

Q3: What is your delivery time?
A3: For standard voltage, the delivery time is 15 working days after you confirm the order. For non-standard voltage, please contact our sales to confirm the delivery time.

Q4: What kind of payment terms do you accept?
A4: We accept T/T, L/C at sight.

Q5: How long is the warranty of your air compressor?
A5: 2 years for the whole air compressor except consumable spare parts.

Q6: How long could your air compressor be used?
A6: Generally, more than 10 years.

Q7: What is your MOQ requirement?
A7: 1 unit.

Q8: Can you offer OEM & ODM service?
A8: Yes, with a professional design team, we can offer OEM & ODM service.

After-sales Service: Engineers Available to Overseas Service.
Warranty: 2 Years
Lubrication Style: Lubricated
Customization:
Available

|

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

air compressor

Are there special considerations for air compressor installations in remote areas?

Yes, there are several special considerations to take into account when installing air compressors in remote areas. These areas often lack access to infrastructure and services readily available in urban or well-developed regions. Here are some key considerations:

1. Power Source:

Remote areas may have limited or unreliable access to electricity. It is crucial to assess the availability and reliability of the power source for operating the air compressor. In some cases, alternative power sources such as diesel generators or solar panels may need to be considered to ensure a consistent and uninterrupted power supply.

2. Environmental Conditions:

Remote areas can present harsh environmental conditions that can impact the performance and durability of air compressors. Extreme temperatures, high humidity, dust, and corrosive environments may require the selection of air compressors specifically designed to withstand these conditions. Adequate protection, insulation, and ventilation must be considered to prevent damage and ensure optimal operation.

3. Accessibility and Transport:

Transporting air compressors to remote areas may pose logistical challenges. The size, weight, and portability of the equipment should be evaluated to ensure it can be transported efficiently to the installation site. Additionally, the availability of suitable transportation infrastructure, such as roads or air transportation, needs to be considered to facilitate the delivery and installation process.

4. Maintenance and Service:

In remote areas, access to maintenance and service providers may be limited. It is important to consider the availability of trained technicians and spare parts for the specific air compressor model. Adequate planning for routine maintenance, repairs, and troubleshooting should be in place to minimize downtime and ensure the longevity of the equipment.

5. Fuel and Lubricants:

For air compressors that require fuel or lubricants, ensuring a consistent and reliable supply can be challenging in remote areas. It is necessary to assess the availability and accessibility of fuel or lubricant sources and plan for their storage and replenishment. In some cases, alternative or renewable fuel options may need to be considered.

6. Noise and Environmental Impact:

Remote areas are often characterized by their natural beauty and tranquility. Minimizing noise levels and environmental impact should be a consideration when installing air compressors. Selecting models with low noise emissions and implementing appropriate noise reduction measures can help mitigate disturbances to the surrounding environment and wildlife.

7. Communication and Remote Monitoring:

Given the remote location, establishing reliable communication channels and remote monitoring capabilities can be essential for effective operation and maintenance. Remote monitoring systems can provide real-time data on the performance and status of the air compressor, enabling proactive maintenance and troubleshooting.

By addressing these special considerations, air compressor installations in remote areas can be optimized for reliable operation, efficiency, and longevity.

air compressor

How are air compressors employed in the mining industry?

Air compressors play a crucial role in the mining industry, providing reliable and efficient power for various mining operations. Here are some common applications of air compressors in mining:

1. Exploration and Drilling:

Air compressors are used during exploration and drilling activities in the mining industry. Compressed air is used to power drilling rigs, pneumatic hammers, and other drilling equipment. The high-pressure air generated by the compressor helps in drilling boreholes, extracting core samples, and exploring potential mineral deposits.

2. Ventilation and Air Quality Control:

Air compressors are employed in underground mining to provide ventilation and control air quality. Compressed air is used to operate ventilation fans and air circulation systems, ensuring adequate airflow and removing harmful gases, dust, and fumes from the mining tunnels and work areas.

3. Material Conveyance:

In mining operations, air compressors are used for material conveyance. Pneumatic systems powered by air compressors are utilized to transport materials such as coal, ore, and other minerals. Compressed air is used to operate pneumatic conveyors, pumps, and material handling equipment, allowing for efficient and controlled movement of bulk materials.

4. Dust Suppression:

Air compressors are employed for dust suppression in mining areas. Compressed air is used to spray water or other suppressants to control dust generated during mining activities. This helps in maintaining a safe and healthy work environment, reducing the risks associated with dust inhalation and improving visibility.

5. Instrumentation and Control:

Air compressors are used for instrumentation and control purposes in mining operations. Compressed air is utilized to power pneumatic control systems, control valves, and actuators. These systems regulate the flow of fluids, control equipment movements, and ensure the proper functioning of various mining processes.

6. Explosive Applications:

In mining, air compressors are used for explosive applications. Compressed air is employed to power pneumatic tools used for rock fragmentation, such as rock drills and pneumatic breakers. The controlled power of compressed air enables safe and efficient rock breaking without the need for traditional explosives.

7. Maintenance and Repair:

Air compressors are essential for maintenance and repair activities in the mining industry. Compressed air is used for cleaning machinery, removing debris, and powering pneumatic tools for equipment maintenance and repair tasks. The versatility and portability of air compressors make them valuable assets in maintaining mining equipment.

It is important to note that different mining operations may have specific requirements and considerations when selecting and using air compressors. The size, capacity, and features of air compressors can vary based on the specific mining application and environmental conditions.

By utilizing air compressors effectively, the mining industry can benefit from increased productivity, improved safety, and efficient operation of various mining processes.

air compressor

Can you explain the basics of air compressor terminology?

Understanding the basic terminology related to air compressors can help in better comprehension of their operation and discussions related to them. Here are some essential terms related to air compressors:

1. CFM (Cubic Feet per Minute): CFM is a unit of measurement that denotes the volumetric flow rate of compressed air. It indicates the amount of air a compressor can deliver within a minute and is a crucial factor in determining the compressor’s capacity.

2. PSI (Pounds per Square Inch): PSI is a unit of measurement used to quantify pressure. It represents the force exerted by the compressed air on a specific area. PSI is a vital specification for understanding the pressure capabilities of an air compressor and determining its suitability for various applications.

3. Duty Cycle: Duty cycle refers to the percentage of time an air compressor can operate in a given time period. It indicates the compressor’s ability to handle continuous operation without overheating or experiencing performance issues. For instance, a compressor with a 50% duty cycle can run for half the time in a given hour or cycle.

4. Horsepower (HP): Horsepower is a unit used to measure the power output of a compressor motor. It indicates the motor’s capacity to drive the compressor pump and is often used as a reference for comparing different compressor models.

5. Receiver Tank: The receiver tank, also known as an air tank, is a storage vessel that holds the compressed air delivered by the compressor. It helps in stabilizing pressure fluctuations, allowing for a more consistent supply of compressed air during peak demand periods.

6. Single-Stage vs. Two-Stage: These terms refer to the number of compression stages in a reciprocating air compressor. In a single-stage compressor, air is compressed in a single stroke of the piston, while in a two-stage compressor, it undergoes initial compression in one stage and further compression in a second stage, resulting in higher pressures.

7. Oil-Free vs. Oil-Lubricated: These terms describe the lubrication method used in air compressors. Oil-free compressors have internal components that do not require oil lubrication, making them suitable for applications where oil contamination is a concern. Oil-lubricated compressors use oil for lubrication, enhancing durability and performance but requiring regular oil changes and maintenance.

8. Pressure Switch: A pressure switch is an electrical component that automatically starts and stops the compressor motor based on the pre-set pressure levels. It helps maintain the desired pressure range in the receiver tank and protects the compressor from over-pressurization.

9. Regulator: A regulator is a device used to control and adjust the output pressure of the compressed air. It allows users to set the desired pressure level for specific applications and ensures a consistent and safe supply of compressed air.

These are some of the fundamental terms associated with air compressors. Familiarizing yourself with these terms will aid in understanding and effectively communicating about air compressors and their functionality.

China Custom 180HP Variable Frequency Two Stage Screw Air Compressor 132kw for Textile Industry Low Price China-Made in Stock Machine   small air compressor China Custom 180HP Variable Frequency Two Stage Screw Air Compressor 132kw for Textile Industry Low Price China-Made in Stock Machine   small air compressor
editor by CX 2023-11-06

China Professional 88291007-567 Air Compressor Air Inlet Bellows for CHINAMFG air compressor for car

Product Description

88291007-567 Air Compressor Air Inlet Bellows for Sullair
Product Description

pack your goods?
There is 3 kinds of ways to packed the goods, which depends on your requirement
1. Packed with original package
2. Packed with your design package
3. Packed with our blank package, below is the example for referenc

Air Compressor Air Inlet Bellows for Sullair FAQ
Q1: How can I get the quotation?
A: you can advise us the part number for checking, and we will quote to you soon by email

Q2: What kind of ways for transportation ?
A:In general by air, sea or Express.(like DHL,Fedex,TNT,etc.)

Q3: How do I know the quality of productions?
A:We have a strict series of quality control, and we have perfect after service system, which can help you to solve the problem soon

Q4: If i want to change model,size,package,etc. How can I do?
A:You can contact us by or mail, and we will revise according to your requirement

Q5: What is the terms of payment ?
A: T/T, Western Union, paypal

Lubrication Style: Oil-free
Cooling System: Air Cooling
Power Source: AC Power
Cylinder Position: Vertical
Structure Type: Closed Type
Installation Type: Stationary Type
Customization:
Available

|

air compressor

Can air compressors be used for shipbuilding and maritime applications?

Air compressors are widely used in shipbuilding and maritime applications for a variety of tasks and operations. The maritime industry relies on compressed air for numerous essential functions. Here’s an overview of how air compressors are employed in shipbuilding and maritime applications:

1. Pneumatic Tools and Equipment:

Air compressors are extensively used to power pneumatic tools and equipment in shipbuilding and maritime operations. Pneumatic tools such as impact wrenches, drills, grinders, sanders, and chipping hammers require compressed air to function. The versatility and power provided by compressed air make it an ideal energy source for heavy-duty tasks, maintenance, and construction activities in shipyards and onboard vessels.

2. Painting and Surface Preparation:

Air compressors play a crucial role in painting and surface preparation during shipbuilding and maintenance. Compressed air is used to power air spray guns, sandblasting equipment, and other surface preparation tools. Compressed air provides the force necessary for efficient and uniform application of paints, coatings, and protective finishes, ensuring the durability and aesthetics of ship surfaces.

3. Pneumatic Actuation and Controls:

Air compressors are employed in pneumatic actuation and control systems onboard ships. Compressed air is used to operate pneumatic valves, actuators, and control devices that regulate the flow of fluids, control propulsion systems, and manage various shipboard processes. Pneumatic control systems offer reliability and safety advantages in maritime applications.

4. Air Start Systems:

In large marine engines, air compressors are used in air start systems. Compressed air is utilized to initiate the combustion process in the engine cylinders. The compressed air is injected into the cylinders to turn the engine’s crankshaft, enabling the ignition of fuel and starting the engine. Air start systems are commonly found in ship propulsion systems and power generation plants onboard vessels.

5. Pneumatic Conveying and Material Handling:

In shipbuilding and maritime operations, compressed air is used for pneumatic conveying and material handling. Compressed air is utilized to transport bulk materials, such as cement, sand, and grain, through pipelines or hoses. Pneumatic conveying systems enable efficient and controlled transfer of materials, facilitating construction, cargo loading, and unloading processes.

6. Air Conditioning and Ventilation:

Air compressors are involved in air conditioning and ventilation systems onboard ships. Compressed air powers air conditioning units, ventilation fans, and blowers, ensuring proper air circulation, cooling, and temperature control in various ship compartments, cabins, and machinery spaces. Compressed air-driven systems contribute to the comfort, safety, and operational efficiency of maritime environments.

These are just a few examples of how air compressors are utilized in shipbuilding and maritime applications. Compressed air’s versatility, reliability, and convenience make it an indispensable energy source for various tasks and systems in the maritime industry.

air compressor

Are there differences between single-stage and two-stage air compressors?

Yes, there are differences between single-stage and two-stage air compressors. Here’s an in-depth explanation of their distinctions:

Compression Stages:

The primary difference between single-stage and two-stage air compressors lies in the number of compression stages they have. A single-stage compressor has only one compression stage, while a two-stage compressor has two sequential compression stages.

Compression Process:

In a single-stage compressor, the entire compression process occurs in a single cylinder. The air is drawn into the cylinder, compressed in a single stroke, and then discharged. On the other hand, a two-stage compressor utilizes two cylinders or chambers. In the first stage, air is compressed to an intermediate pressure in the first cylinder. Then, the partially compressed air is sent to the second cylinder where it undergoes further compression to reach the desired final pressure.

Pressure Output:

The number of compression stages directly affects the pressure output of the air compressor. Single-stage compressors typically provide lower maximum pressure levels compared to two-stage compressors. Single-stage compressors are suitable for applications that require moderate to low air pressure, while two-stage compressors are capable of delivering higher pressures, making them suitable for demanding applications that require greater air pressure.

Efficiency:

Two-stage compressors generally offer higher efficiency compared to single-stage compressors. The two-stage compression process allows for better heat dissipation between stages, reducing the chances of overheating and improving overall efficiency. Additionally, the two-stage design allows the compressor to achieve higher compression ratios while minimizing the work done by each stage, resulting in improved energy efficiency.

Intercooling:

Intercooling is a feature specific to two-stage compressors. Intercoolers are heat exchangers placed between the first and second compression stages. They cool down the partially compressed air before it enters the second stage, reducing the temperature and improving compression efficiency. The intercooling process helps to minimize heat buildup and reduces the potential for moisture condensation within the compressor system.

Applications:

The choice between a single-stage and two-stage compressor depends on the intended application. Single-stage compressors are commonly used for light-duty applications such as powering pneumatic tools, small-scale workshops, and DIY projects. Two-stage compressors are more suitable for heavy-duty applications that require higher pressures, such as industrial manufacturing, automotive service, and large-scale construction.

It is important to consider the specific requirements of the application, including required pressure levels, duty cycle, and anticipated air demand, when selecting between a single-stage and two-stage air compressor.

In summary, the main differences between single-stage and two-stage air compressors lie in the number of compression stages, pressure output, efficiency, intercooling capability, and application suitability.

air compressor

How is air pressure measured in air compressors?

Air pressure in air compressors is typically measured using one of two common units: pounds per square inch (PSI) or bar. Here’s a brief explanation of how air pressure is measured in air compressors:

1. Pounds per Square Inch (PSI): PSI is the most widely used unit of pressure measurement in air compressors, especially in North America. It represents the force exerted by one pound of force over an area of one square inch. Air pressure gauges on air compressors often display pressure readings in PSI, allowing users to monitor and adjust the pressure accordingly.

2. Bar: Bar is another unit of pressure commonly used in air compressors, particularly in Europe and many other parts of the world. It is a metric unit of pressure equal to 100,000 pascals (Pa). Air compressors may have pressure gauges that display readings in bar, providing an alternative measurement option for users in those regions.

To measure air pressure in an air compressor, a pressure gauge is typically installed on the compressor’s outlet or receiver tank. The gauge is designed to measure the force exerted by the compressed air and display the reading in the specified unit, such as PSI or bar.

It’s important to note that the air pressure indicated on the gauge represents the pressure at a specific point in the air compressor system, typically at the outlet or tank. The actual pressure experienced at the point of use may vary due to factors such as pressure drop in the air lines or restrictions caused by fittings and tools.

When using an air compressor, it is essential to set the pressure to the appropriate level required for the specific application. Different tools and equipment have different pressure requirements, and exceeding the recommended pressure can lead to damage or unsafe operation. Most air compressors allow users to adjust the pressure output using a pressure regulator or similar control mechanism.

Regular monitoring of the air pressure in an air compressor is crucial to ensure optimal performance, efficiency, and safe operation. By understanding the units of measurement and using pressure gauges appropriately, users can maintain the desired air pressure levels in their air compressor systems.

China Professional 88291007-567 Air Compressor Air Inlet Bellows for CHINAMFG   air compressor for carChina Professional 88291007-567 Air Compressor Air Inlet Bellows for CHINAMFG   air compressor for car
editor by CX 2023-11-06

China manufacturer Powerful Air Cooling Compressor for Refrigeration High Quality Cooler portable air compressor

Product Description

Quick Cooling Energy Saving General Industrial Air Compressors  Good Price

 

 

After-sales Service: Online
Warranty: 1 Year
Lubrication Style: Oil-free
Cooling System: Air Cooling
Cylinder Arrangement: Duplex Arrangement
Cylinder Position: Angular
Samples:
US$ 500/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

air compressor

How does variable speed drive technology improve air compressor efficiency?

Variable Speed Drive (VSD) technology improves air compressor efficiency by allowing the compressor to adjust its motor speed to match the compressed air demand. This technology offers several benefits that contribute to energy savings and enhanced overall system efficiency. Here’s how VSD technology improves air compressor efficiency:

1. Matching Air Demand:

Air compressors equipped with VSD technology can vary the motor speed to precisely match the required compressed air output. Traditional fixed-speed compressors operate at a constant speed regardless of the actual demand, leading to energy wastage during periods of lower air demand. VSD compressors, on the other hand, ramp up or down the motor speed to deliver the necessary amount of compressed air, ensuring optimal energy utilization.

2. Reduced Unloaded Running Time:

Fixed-speed compressors often run unloaded during periods of low demand, where they continue to consume energy without producing compressed air. VSD technology eliminates or significantly reduces this unloaded running time by adjusting the motor speed to closely follow the air demand. As a result, VSD compressors minimize energy wastage during idle periods, leading to improved efficiency.

3. Soft Starting:

Traditional fixed-speed compressors experience high inrush currents during startup, which can strain the electrical system and cause voltage dips. VSD compressors utilize soft starting capabilities, gradually ramping up the motor speed instead of instantly reaching full speed. This soft starting feature reduces mechanical and electrical stress, ensuring a smooth and controlled startup, and minimizing energy spikes.

4. Energy Savings at Partial Load:

In many applications, compressed air demand varies throughout the day or during different production cycles. VSD compressors excel in such scenarios by operating at lower speeds during periods of lower demand. Since power consumption is proportional to motor speed, running the compressor at reduced speeds significantly reduces energy consumption compared to fixed-speed compressors that operate at a constant speed regardless of the demand.

5. Elimination of On/Off Cycling:

Fixed-speed compressors often use on/off cycling to adjust the compressed air output. This cycling can result in frequent starts and stops, which consume more energy and cause mechanical wear. VSD compressors eliminate the need for on/off cycling by continuously adjusting the motor speed to meet the demand. By operating at a consistent speed within the required range, VSD compressors minimize energy losses associated with frequent cycling.

6. Enhanced System Control:

VSD compressors offer advanced control capabilities, allowing for precise monitoring and adjustment of the compressed air system. These systems can integrate with sensors and control algorithms to maintain optimal system pressure, minimize pressure fluctuations, and prevent excessive energy consumption. The ability to fine-tune the compressor’s output based on real-time demand contributes to improved overall system efficiency.

By utilizing variable speed drive technology, air compressors can achieve significant energy savings, reduce operational costs, and enhance their environmental sustainability by minimizing energy wastage and optimizing efficiency.

air compressor

What safety precautions should be taken when working with compressed air?

Working with compressed air requires adherence to certain safety precautions to prevent accidents and ensure the well-being of individuals involved. Here are some important safety measures to consider:

1. Personal Protective Equipment (PPE):

Wear appropriate PPE, including safety goggles or a face shield to protect eyes from flying debris or particles, hearing protection to reduce noise exposure, and gloves to safeguard hands from potential hazards.

2. Compressed Air Storage:

Avoid storing compressed air in containers that are not designed for this purpose, such as soda bottles or makeshift containers. Use approved and properly labeled air storage tanks or cylinders that can handle the pressure and are regularly inspected and maintained.

3. Pressure Regulation:

Ensure that the air pressure is regulated to a safe level suitable for the equipment and tools being used. High-pressure air streams can cause serious injuries, so it is important to follow the manufacturer’s recommendations and never exceed the maximum allowable pressure.

4. Air Hose Inspection:

Regularly inspect air hoses for signs of damage, such as cuts, abrasions, or leaks. Replace damaged hoses immediately to prevent potential accidents or loss of pressure.

5. Air Blowguns:

Exercise caution when using air blowguns. Never direct compressed air towards yourself or others, as it can cause eye injuries, hearing damage, or dislodge particles that may be harmful if inhaled. Always point blowguns away from people or any sensitive equipment or materials.

6. Air Tool Safety:

Follow proper operating procedures for pneumatic tools. Ensure that tools are in good working condition, and inspect them before each use. Use the appropriate accessories, such as safety guards or shields, to prevent accidental contact with moving parts.

7. Air Compressor Maintenance:

Maintain air compressors according to the manufacturer’s guidelines. Regularly check for leaks, clean or replace filters, and drain moisture from the system. Proper maintenance ensures the safe and efficient operation of the compressor.

8. Training and Education:

Provide adequate training and education to individuals working with compressed air. Ensure they understand the potential hazards, safe operating procedures, and emergency protocols. Encourage open communication regarding safety concerns and implement a culture of safety in the workplace.

9. Lockout/Tagout:

When performing maintenance or repairs on compressed air systems, follow lockout/tagout procedures to isolate the equipment from energy sources and prevent accidental startup. This ensures the safety of the individuals working on the system.

10. Proper Ventilation:

Ensure proper ventilation in enclosed areas where compressed air is used. Compressed air can displace oxygen, leading to a potential risk of asphyxiation. Adequate ventilation helps maintain a safe breathing environment.

By adhering to these safety precautions, individuals can minimize the risks associated with working with compressed air and create a safer work environment.

air compressor

What are the safety considerations when operating an air compressor?

Operating an air compressor requires careful attention to safety to prevent accidents, injuries, and equipment damage. Here are some important safety considerations to keep in mind:

1. Read the Manual: Before operating an air compressor, thoroughly read and understand the manufacturer’s instruction manual. Familiarize yourself with the specific safety guidelines, recommended operating procedures, and any specific precautions or warnings provided by the manufacturer.

2. Proper Ventilation: Ensure that the area where the air compressor is operated has adequate ventilation. Compressed air can produce high levels of heat and exhaust gases. Good ventilation helps dissipate heat, prevent the buildup of fumes, and maintain a safe working environment.

3. Personal Protective Equipment (PPE): Always wear appropriate personal protective equipment, including safety glasses or goggles, hearing protection, and non-slip footwear. Depending on the task, additional PPE such as gloves, a dust mask, or a face shield may be necessary to protect against specific hazards.

4. Pressure Relief: Air compressors should be equipped with pressure relief valves or devices to prevent overpressurization. Ensure that these safety features are in place and functioning correctly. Regularly inspect and test the pressure relief mechanism to ensure its effectiveness.

5. Secure Connections: Use proper fittings, hoses, and couplings to ensure secure connections between the air compressor, air tools, and accessories. Inspect all connections before operation to avoid leaks or sudden hose disconnections, which can cause injuries or damage.

6. Inspect and Maintain: Regularly inspect the air compressor for any signs of damage, wear, or leaks. Ensure that all components, including hoses, fittings, and safety devices, are in good working condition. Follow the manufacturer’s recommended maintenance schedule to keep the compressor in optimal shape.

7. Electrical Safety: If the air compressor is electric-powered, take appropriate electrical safety precautions. Use grounded outlets and avoid using extension cords unless approved for the compressor’s power requirements. Protect electrical connections from moisture and avoid operating the compressor in wet or damp environments.

8. Safe Start-Up and Shut-Down: Properly start and shut down the air compressor following the manufacturer’s instructions. Ensure that all air valves are closed before starting the compressor and release all pressure before performing maintenance or repairs.

9. Training and Competence: Ensure that operators are adequately trained and competent in using the air compressor and associated tools. Provide training on safe operating procedures, hazard identification, and emergency response protocols.

10. Emergency Preparedness: Have a clear understanding of emergency procedures and how to respond to potential accidents or malfunctions. Know the location of emergency shut-off valves, fire extinguishers, and first aid kits.

By adhering to these safety considerations and implementing proper safety practices, the risk of accidents and injuries associated with operating an air compressor can be significantly reduced. Prioritizing safety promotes a secure and productive working environment.

China manufacturer Powerful Air Cooling Compressor for Refrigeration High Quality Cooler   portable air compressorChina manufacturer Powerful Air Cooling Compressor for Refrigeration High Quality Cooler   portable air compressor
editor by CX 2023-11-03