Tag Archives: air compressor two piston

China Good quality Two Stages High Pressure Oilless Oil-Free Reciprocating Piston Type Air compressor air compressor portable

Product Description

Industrial Diesel High Pressure Piston Air Compressor Advantages

No vibration after simple installation.
 
Use vane air cooling technology, larger cooling area, and longer life.
 
Flywheel’s weight is increased, incredible energy saving.
 
Designed especially for PET bottle blowing machinery, plastic injection molding machinery and hydropower station, etc.
 

Technical Parameters Of Industrial Diesel High Pressure Piston Air Compressor

Title Model Air  delivery Max.working
 pressure
Motor power Overall Dimensions
(mm)
Weight
(kg)
m3/min cfm bar psig kw hp
High pressure /
Booster Series
 Air compressor
2 Stage
 compression
DG0.8/30 0.8 28.25 30 435 9 12 1080*620*800 350
DG1.25/30 1.25 44.14 30 435 15 20 1800*650*1450 550
DG1.5/30 1.5 52.97 30 435 15 20 1500*850*1050 550
DG3/17 3 105.93 17 247 30 40 1750*1050*1250 700
DG6/17 6 211.86 17 247 45 60 1850*1050*1250 750
3 Stage 
compression
DG2.2/40 2.2 77.68 40 580 22 29 1780*1050*1340 800
DG2.2/30 2.2 77.68 30 435 22 29 1780*1050*1340 650
DG3.3/30 3.3 116.52 30 435 30 40 1780*1050*1340 900
DG3/40 3 105.93 40 580 30 40 1650*1250*1250 1100
DG0.8/100 0.8 28.25 100 1450 15 20 1300*850*1350 700
DG1/70 1 35.31 70 1015 15 20 1300*850*1350 500
DG1/40 1 35.31 40 580 15 20 1300*850*1350 600
4 Stage 
compression
DG1/150 1 35.31 150 2175 22 29 1650*1450*1140 980
DG1/200 1 35.31 200 2900 22 29 1650*1450*1140 980
DG1/300 1 35.31 300 4350 22 29 1650*1450*1140 1050
DG1/400 1 35.31 400 5800 22 29 1650*1450*1140 2700
DG2.0/80 2 70.62 80 1160 30 40 1780*1450*1140 2500
DG2.2/150 2.2 77.68 150 2175 30 40 1780*1450*1340 980
DG2/300 2 70.62 300 4350 37 50 1780*1450*1340 1500
DG3/80 3 105.93 80 1160 30 40 1780*1450*1140 2600
DG3/200 3 105.93 200 2900 45 60 1780*1450*1340 2600
5 Stage
 compression
DG2/450 2 70.62 450 6525 37 50 1780*1450*1340 2600
DG3/300 3 105.93 300 4350 45 60 1780*1450*1340 2600
DG3/450 3 105.93 450 6525 55 74 1780*1450*1340 2800

*) Specifications are subject to change without prior notice

DENAIR Certifications

DENAIR Factory

DENAIR International Trading Team

Why Choose DENAIR ?

We carefully selected for you the classic case

DENAIR High Pressure Air Compressor in Myanmar

Project Name: Plastic industry PET bottles blowing machine in Yangon, Myanmar

Product Name: 1.6m3/min 350bar diesel driven piston air compressor

Model No. & Qty: DG-1.6/350 x 1

Working Time: From May, 2016 till now


 

FAQ

Q1: Are you factory or trade company?  
A1: We are factory.

Q2: What the exactly address of your factory? 
A2: Our company is located in No. 6767, Tingfeng Rd. Xihu (West Lake) Dis.n District, ZheJiang  201502, China
And our factory is located in No. 366, YangzhuangBang Street, Pingxing Rd., Xindai Town,HangZhou, ZHangZhoug Province, China

Q3: Warranty terms of your machine? 
A3: Two years warranty for the machine and technical support according to your needs.

Q4: Will you provide some spare parts of the machines? 
A4: Yes, of course.

Q5: How long will you take to arrange production? 
A5: 380V 50HZ we can delivery the goods within 10 days. Other electricity or other color we will delivery within 22 days

Q6: Can you accept OEM orders? 
A6: Yes, with professional design team, OEM orders are highly welcome.

air compressor

What Are the Key Components of a Water-Lubrication System in Compressors?

A water-lubrication system in compressors typically consists of several key components that work together to provide lubrication and cooling to the compressor. Here’s a detailed explanation of the key components of a water-lubrication system in compressors:

Water Supply:

  • Water Source: The water-lubrication system requires a water source that provides clean and suitable water for lubrication. The water can be sourced from various places such as municipal water supply, well water, or treated water from a dedicated water treatment system.
  • Water Inlet: The water inlet is the entry point where water enters the compressor’s lubrication system. It may include valves, filters, or other components to regulate and control the water flow.

Lubrication System:

  • Water Jackets: Water jackets are channels or passages built into the compressor’s housing or cylinder walls. These jackets allow water to circulate and come into direct contact with the compressor’s moving parts, providing lubrication and cooling. The water jackets help dissipate heat generated during compression and prevent excessive temperatures that could damage the compressor.
  • Water Pump: The water pump is responsible for circulating water through the water jackets and the entire lubrication system. It provides the necessary pressure to ensure adequate water flow and distribution to the compressor’s components.
  • Flow Control Devices: Flow control devices, such as valves or flow restrictors, are often included in the water-lubrication system to regulate and control the water flow rate. These devices help maintain optimal water pressure and flow throughout the system, ensuring effective lubrication and cooling.
  • Water Filters: Water filters are used to remove impurities, sediment, or debris from the water before it enters the lubrication system. They help prevent blockages, protect the compressor’s components from damage, and maintain the quality of the water used for lubrication.
  • Water Separator: A water separator is a component that removes excess water, moisture, or condensate from the compressed air. It ensures that the compressed air leaving the compressor is dry and free from excess water content, preventing potential issues such as corrosion or contamination downstream.

Control and Monitoring:

  • Temperature Sensors: Temperature sensors are used to monitor the temperature of the water and the compressor components. They provide feedback to the control system, allowing for adjustments in water flow or cooling measures if required to maintain optimal operating conditions.
  • Pressure Sensors: Pressure sensors are employed to monitor the water pressure within the lubrication system. They help ensure that the water flow and pressure are within the desired range, allowing for proper lubrication and cooling of the compressor.
  • Control System: A control system, which may include a combination of sensors, valves, and controllers, is responsible for regulating and maintaining the operation of the water-lubrication system. It can monitor various parameters, such as temperature, pressure, and flow, and make adjustments as needed to ensure efficient and safe operation.

Regular maintenance, inspection, and monitoring of the key components of the water-lubrication system are essential to ensure its proper functioning and to prevent any issues that could affect the performance and longevity of the compressor.

air compressor

What Are the Considerations for Choosing Water-Lubricated vs. Oil-Lubricated Compressors?

When selecting between water-lubricated and oil-lubricated compressors, several considerations come into play. Here’s a detailed explanation of the key factors to consider when choosing between these two types:

Operating Environment:

  • Water Sensitivity: Water-lubricated compressors are well-suited for environments where water is readily available and can be easily supplied to the compressor system. On the other hand, oil-lubricated compressors are more suitable for applications where water is not readily available or where water contamination could pose a problem.
  • Cleanliness Requirements: If the application demands a high level of cleanliness, such as in certain manufacturing processes or cleanroom environments, water-lubricated compressors may be preferred. Water is inherently cleaner than oil and reduces the risk of oil contamination in sensitive operations.

Maintenance and Service:

  • Lubricant Replacement: Oil-lubricated compressors require regular oil changes and maintenance to ensure proper lubrication and performance. Water-lubricated compressors, on the other hand, eliminate the need for oil changes and associated maintenance tasks, simplifying the maintenance requirements.
  • Oil Contamination: Oil-lubricated compressors carry the risk of oil contamination in the compressed air system. This can be a concern in certain applications where oil contamination can negatively impact product quality or downstream equipment. Water-lubricated compressors reduce the risk of oil contamination, making them advantageous in such applications.

Environmental Impact:

  • Oil Disposal: Oil-lubricated compressors generate used oil that requires proper disposal in accordance with environmental regulations. Water-lubricated compressors eliminate the need for oil disposal, contributing to a reduced environmental impact.
  • Energy Efficiency: In terms of energy efficiency, water-lubricated compressors tend to have an advantage. Water has a higher specific heat capacity than oil, meaning it can absorb and dissipate heat more effectively. This can result in improved cooling efficiency and potentially lower energy consumption compared to oil-lubricated compressors.

Application-Specific Factors:

  • Operating Pressure: Water-lubricated compressors are generally suitable for lower to moderate operating pressures. Oil-lubricated compressors, on the other hand, can handle higher operating pressures, making them more appropriate for applications that require higher pressure levels.
  • Temperature Sensitivity: Water-lubricated compressors may have limitations in applications where low temperatures are encountered. Water freezing or becoming slushy can cause operational issues. Oil-lubricated compressors, with appropriate low-temperature oil formulations, can better handle such temperature-sensitive conditions.

Cost Considerations:

  • Initial Cost: Water-lubricated compressors generally have a lower initial cost compared to oil-lubricated compressors. This cost advantage can be attractive for applications with budget constraints.
  • Maintenance Cost: Over the long term, water-lubricated compressors may have lower maintenance costs due to the elimination of oil changes and associated maintenance tasks. However, it’s important to consider the specific maintenance requirements and costs associated with each type of compressor.

By considering these factors, including the operating environment, maintenance and service requirements, environmental impact, application-specific factors, and cost considerations, one can make an informed decision when choosing between water-lubricated and oil-lubricated compressors.

air compressor

Are Water Lubrication Air Compressors More Environmentally Friendly?

Water lubrication in air compressors offers several environmental benefits compared to traditional lubrication methods. Here are some reasons why water lubrication is considered more environmentally friendly:

  1. Non-toxic and biodegradable: Water is a natural substance that is non-toxic and biodegradable. It does not contain harmful chemicals or additives that can pollute the air or water systems. When water lubricants are used in air compressors, there is a reduced risk of environmental contamination.
  2. Reduced air pollution: Traditional lubricants, such as oils or synthetic lubricants, can release volatile organic compounds (VOCs) into the air during operation. VOCs contribute to air pollution and can have detrimental effects on human health and the environment. Water lubrication eliminates the release of VOCs, resulting in improved air quality and reduced air pollution.
  3. Minimized water pollution: Water lubrication does not introduce additional pollutants into water systems. Unlike oils or synthetic lubricants, water does not leave behind harmful residues or contaminants that can contaminate water sources. This helps to protect aquatic ecosystems and maintain water quality.
  4. Energy efficiency: Water lubrication can contribute to energy efficiency in air compressors. Water has excellent heat transfer properties, allowing for efficient dissipation of heat generated during compressor operation. By effectively managing heat, water lubrication helps to reduce energy consumption and improve overall compressor efficiency.
  5. Sustainable resource: Water is a renewable resource that is readily available in nature. Unlike oil or synthetic lubricants, which require extraction and processing, water can be sourced sustainably. This reduces the reliance on finite resources and promotes a more sustainable approach to lubrication in air compressors.

Overall, water lubrication in air compressors is considered more environmentally friendly due to its non-toxic nature, reduced air and water pollution, energy efficiency, and sustainable resource usage.

China Good quality Two Stages High Pressure Oilless Oil-Free Reciprocating Piston Type Air compressor   air compressor portableChina Good quality Two Stages High Pressure Oilless Oil-Free Reciprocating Piston Type Air compressor   air compressor portable
editor by CX 2024-01-10